
Complexity-Algorithms, Spring 2026

Rest of intro
Recurrences&
Recursion

Recep
· How was reading?

·HWO-due Thursday
· Office hours posted

↳ since none yesterday , will plan M

to be around thurs
in morning

Clarification from last time

Big-0 : f(n) is O(g(n)) If JC,Nest
fn> N,

f(n) = cog(n) f(n)
<g(n)

f(n) is -((g(n)) if Ec, N
=0

Omega : I I

St .

En > Ns f(n) =cog(n)
Theta : f(u) is Og(n)) If f(n) is Olgin')

and f(n) is -elg(n)) :
-

Little-o : f(n) = olg(n) Ifm
So : f(ni=o(g(n)) => f(n)= (g(n)

Cleaner example :
Are these

O(), -(n2), 0(nz) ?
(n +Y

- 0

f(n) = 17n + 11 ! Ou I'm2
no

-

n n : 0(n2)g(n) = log-
non no logn <n

h(n)= - 100 % 0(r)+ (n2)
↳&(n7

j (n)
= 3 yo" s(n2)
↳

Induction ! Chorless children

Another : Every rooted binary tree of

height h has+ -1 nodes
6 92

Rall : height (T)= · O If no children

3 E max (h(x)) + 1

· 23
+

/
19 children X

· 45 nodes
06

Proof Induction on Lighth of tree
-

Base case
:h = 0

-

· 1 mode
-oH1 = 1

I: tree with height k<h has

[2k+ -1 nodes

ES : Consider hight
h tree T :

T ·

intweg height i↳ say
(n-1)+ 1

#nodes in Th 2
- 1

UseIf :
nodes inTQ2

: *
-1

Ti = [y(h-)+-1
=>nodes inT1+

"
-1)+(1)= 22"-1 =2 in

5 Pseudo code a runtime :O
Discrete math examples

(from Rosen textbook)

⑳ y
=2 Pascal-
x

=2 like
O -

boolean

This book : calls
vor assignmen function

O I Eboden
O

W

Pseudocode conventions · Here :

Variable assignment : --

Boolean come
x=y

or X ==Yarison :

-

rays : A[0 ..
n- 1]

- each element : A[i]

Lops: for itI to n

Pseudocode format :
·

In a pinch , pretend you're in Python
or Ruby> High level a readable·

I realize this is not a "definition"
-

that is the point !-
It's about effective communication.
-

Reading today : recursion

Most of you
indicated you'd seen

It before . Topics here
:

-Towers of Hano
-

- Merge sort
-

- Recap of recurrences &

"Master theorem"
- Linear time selection

- Multiplication(again) Z, FFT
- Exponentiation

I

[Question : All review?)

A high level note on
recisions

Recursion really can be simpler -
useful !

Often depends upon the language-
D

.and setul
Counter-intuitive, but that's

often due

to lack of practice .

considered slower : memory
!

Often -
T far

TFnn Not really
Ten I ↑ functional languages
FtFr
-
Stack

Recusion
direc· If you can

solve Hy cusually
because in put is small)

,

do it !
· Otherwise

,
reduce to simple (usually smaller

instances of the some problem.
-

Recursion tary-
- Helps to solidify that "black box"
mentality, so you don't keep
unpacking the next level.

(She's also called the

"induction hypothesis" .)

Classic example your book
-

TC T

-
Another version

Aside : Why 2 croofs
?

I
-

2 functions !

in Merge
sort

D T

RecursionTreswith an example.
have a function

which :

Suppose we A [I .on]

M O takes input of sizen
calls to out

3 recursive inO of size⑭ each
insideO -

for jo 1 to i
&Makehas a double for loop

- for it I to -

②

T(n) = "top level"
+ rec calls =3TCE) + n2

T(k) = 3T()+ 12

How can Ivisualize the ~ +E)
time spent ⑮

/11 / /

Recursion tree : Sum up all operations
-

⑭ level0 2 d

As (i) & node(workd
⑭ G level!i in 0

Xi logan i/// = i= 23 (5)
i=0⑭---level 2
= logi

: level i
i=0O

O zi nodes - n2li
:
① depth

d :

n
=3d =

En =1E d=log
U

=a(n)

⑫

Recall : geometric Series
S

0
- O O C
-

So : If summation looks like
Series

,
can solve

Next part : how to generalize?
T(n) = rT(z) + f(n)

- Lof ree

calls7What it means :

·

SAlgorithm (1) :.Il code

for it1 for↳

Then
,

turn into summation

T (n) = rT(E)+ f(n)

↳ C

- level :
ri nodes
,

↑ each doing
depth=L f(E) operations

↓ =1 L
= logar

C this
zelogen
Th= Erif(e) > isgen
i = 0

MasterTheorem :

u
descending gamesu rato-1
E& asendinggeomes

c=1

a ti
Ec
=1

D

Proof : geom
series

-

Aside : When can't I use Master theorem?
-

Answer: When It's not a geometric
-

Series! recurrences
f
linerinhomogeneous

Hanoi : H(n) =2H) +QY
solve? How?Can we still characterthod

equ

sonenhal ! ①
ext

I
n -y x

- 1

therhas 211 dep ne
,Queue

nodes ①①G
= 0(24) i

Another : T(n)= iT(w) +O(n)-
why? nor or

c

① levelO

still do tree :

un childress
↓

=n43loglogy Fi 1- zi)E N (H Y2 # ---
i=0 work- level

2

permode
#
rodes(n--(n*2)/ny- = n3/4

-loggin · leveli
1-Zi⑭ N
nodes-iglona llogn)"= los2n

i=0 ↓ - d= log(ogn)
= n log log n 124 =1 d depth :

-

z

1 = N 2 = log v

Another:T(n)==) +T()+ n 2

Why ? 2 rec cos
-

↳ different sizes

Tree :⑫ level o

my Ms

/
⑭

Take away :
· Many ways

to tackle recurrences

· In this class
,
divide a conquer

(willCa perhaps linea inhomogeneous
be most common

· Many other techniques exist

↳ see supplemental needing
If curious

A note on MoM

Goal is to

eliminate a

constant fraction

of the options.

How? (Can't sort!)
Array A[1 .

n]

-
↓

First example of non-Master theorem !
-

Can alway guarantee
at least are
eliminated.

So :
M(n) [

Then solving :

Next reading : Backtracking
Iwill feel similar to

classic Al)

Really , more recursion
!

Also
, helps to set up Dynamic
Programming.

&

