
ComplexityaAlgorithms-Spring26

Background

Recap-
· Any syllabus questions

?

· two is posted
· Reading posted

for next week

& ↳2 posted
· discrete maths
· data structures -

-

· Class slack ↳ questors !
I

-

Expectations
When I say "give

an algorithm" , "show

how to compute...
"

,
etc

,
what do I mean ?

· Pseudocode (+ description)
· Runtime (+ space)
· Proof of correctness

of
Background
① Bigo a little-on

O :

GFormally, f(n)
= O(g(n)S M

If: n - N , 7C
constantO I- -

sit. f(n) + c g
On)

↳ Past some target
N,
folignoc

"dominated by "G nis Ofn)

w avoid low level implementation
details

Example :⑯ andQuf(n)

f(n) IS O(g(n)) :
X1Fix N =7

5r-61c(Im+rit
C & =C

5-6 < 5n3-6(9n3 +3n
=
+ 1)
-
-

g(u) is Octtul) :
=1: g(n)

Set= 4 : CfIn)= zon3-24

little : f(n) is olg(n)) :
-

An> N Jcz0 sit.I
ful=- (g(n))f(n) 1 Cog(n)

W
I

6n2 is out
Ex N=1. 3-

set c=7 2

Gn2 - Copre
you

-

big-Thate
: T(n) = O(g(n))

-② logarithms
: useful identities

Find it in your discrete
-
-

i-4moth reference, O-

ReDA : Gogab= exponent yor take
a to in order togeth

log .b = X (ta = b

Identities : how do exponents belove
?

2) . 2y= 2
**Y logp(y) = logo X + logpY

==2

(2) = 2 =
glogan = n
-

In-loge"log" Ig = loga

Another :

b = labx
ogy

base
-

-

Use it : Show

8On
= logn

Set 0 ↓ N = 10

then Blogon = Clogah
(=)

③summators discrete moth books and

table. EdIt .
Love it.

Exi
3 = 0(nz)
-

Notation reminder:f(i) = f() + +(2)
+ - +f()

Cloops!)

Note : f(i) is any
function !
~ times

-

5 = (5 + S + .. +5) = 5n
= 0(n)

-

Y=-W +
for loops

n i
U

2 Ellogn) = Eilogari= 1 j-
-

=logh* Onlogn)

· E-- + 1

Zi = --
1

= (n+)

logan = logch +2
.ought -+logch

= logch [1 +2+ ---+]

⑪ Induction :

There is a template ! Fix what

you
induct on

Base case : Show true for some
small

- Instances

Enhypothesis : Assume true for
all
k

Intrances up to
some

size

Estep : Show true for sizeki

P(I)Thinkofthisautomat.

ExampleRecall Fi =F1
-

Fo =0 Fr
=o2:7)F=1 Fu=3. --

Vn>1
,
Fu = FautFarz

Induction on :
I

Base case : n= 1 LHS : [Fi =FI =1
= I

RHS : F22-1 =F =24 = 1
v

P(1) is true

IH : - k < n jeg is true
-W

* Fi=Y plat
k+2 H-

i =1

IS : Show
Legalitys: P(n)

LHS : ConsiderFi = (FrEt+
i I

n-1

= Fr + (Fi)
i= 1

un
-

useIH :

men
--

-Ent -1)

bydofe
A

- 1

Induction on structures : vertices edges
- /

Consider graphs : G = (V , E)
Theorem : In any

undirected groph, the
number of vertices of

odd degreeVSEVs]
is even Vi

V6
↳ +

E= E(u, u)(y,n +V)
No

- all
vertices

have

Examplesisgeya
Va
V

V3
degree

=3

O X zallO/- Kap
O O 6 vertices

O O
O
00

⑧-
O O O O

Note here ⑱ 00 -
induct on vertices
or edges

Proof by induction on the number of
edges :
-

Base Case ! no edges lay Erites)
· Any graph with Oedges has

o
g

all vertices with deg
=0

-

=> even
of odd Egrees (=0)

Inductive hypothesis :
h with Ok < mAny grap has even of volesedges

with odd degree,
lany # of vortices)

Inductive Step :
Consider a graph with m edges

(Not in base case,om
= 1)

Fix some edge =[Uv]

uor
delete

-O sogato
m edges total

It, 6'has
even of odd degree

By
vertices.-> call this X.

What if we
re-adde?

Cases ·
-

o W andI had even degree In6
even even

-#
U

Now
,
both have

old degree

X +2
odd deg.

vertices

~
is even ,

so
is X+2.

X

O

n + v had odd degree in 6
odd old

=> now
both even

F &

so G has X odd deg
veries -

still even

· wlog , u even dog -V odd dieg
even vodd

=E
-
↑

Godd even

-> still X odd deg.
vortices.

= Even #
of odd degree·

Another : Every rooted binry
tree of

height h
has I -1 nodes

Rec : height (t)=&
Proof-

5 Pseudo code a runtime :O
Discrete math examples

(from Rosen textbook)

This book :

Pseudocode conventions · Here :

Variable assignment :-

Boolean comparison
:

-

rays : A[0 .. n- 1]

- each element :

Loops:

Pseudocode format :
·

In a pinch , pretend you're in Python
or Ruby> High level a readable·

I realize this is not a "definition"
-

that is the point !-
It's about effective communication.

Next reading : recursion
Most of you

indicated you'd seen
It before . Topics here

:

-Towers of Hano
- Merge sort
- Recap of recurrences &

"Master theorem"
- Linear time selection

- Multiplication(again)
- Exponentiation

I

A high level note on
recisions

Recursion really can be simpler -
useful !

Often depends upon the language
and setup.

Counter-intuitive, but that's
often due

to lack of practice .

Often considered slower :

Recusion
direc· If you can

solve Hy cusually
because in put is small)

,

do it !
· Otherwise

,
reduce to simple (usually smaller

instances of the some problem.
-

Recursion tary-
- Helps to solidify that "black box"
mentality, so you don't keep
unpacking the next level.

(She's also called the

"induction hypothesis" .)

Classic example your book

-
Another version

