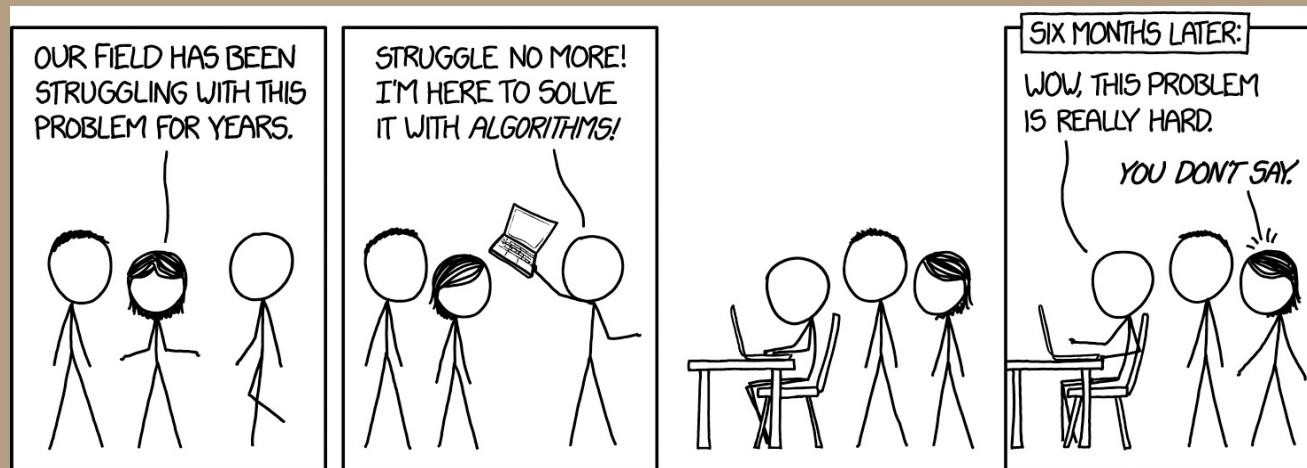


Complexity & Algorithms - Spring '26



Background

Recap

- Any syllabus questions?
- HWO is posted
- Reading posted for next week

↳ 2 posted

- discrete math
- data structures ←
- Class slack ← questions!

Expectations

When I say "give an algorithm", "show how to compute ...", etc, what do I mean?

- Pseudocode (+ description)
- Runtime (+ space)
- Proof of correctness ~~*~~

Background

① Big-O + little-o + O:

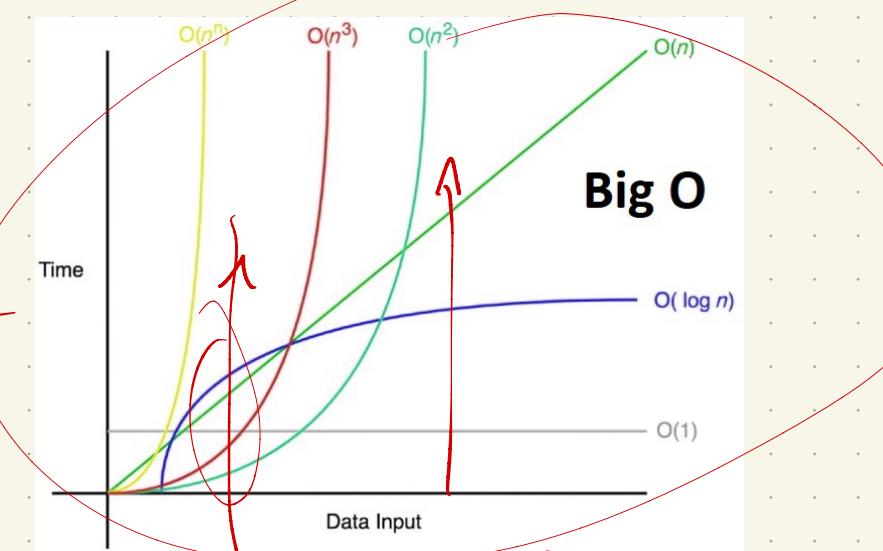
Formally, $f(n) = O(g(n))$

If: $\exists n > N, \exists c \text{ constant}$

s.t. $f(n) \leq c \cdot g(n)$

→ Past some target N , f is
"dominated by" g

Why? avoid low level implementation
details



$O(1) < O(\log n) < O(n)$

A LS

n is $O(\frac{1}{3}n)$

Example: $f(n) = 5n^3 - 6$ and $g(n) = 14n^3 + 3n^2 + 11$

$f(n)$ is $O(g(n))$:

Fix $N = \cancel{> 1}$

c

$$5n^3 - 6 \leq c(14n^3 + 3n^2 + 11)$$

$\cancel{c} \quad 1=c$

$$5n^3 - 6 \leq 5n^3 - 6 + 9n^3 + 3n^2 + 11$$

≥ 0

$g(n)$ is $O(f(n))$:

Set $c=4$: $c \cdot f(n) = 20n^3 - 24$

littleo: $f(n)$ is $o(g(n))$:

$\forall n > N \exists c \geq 0$ s.t.

$$f(n) = \sum g(n) f(n) \leq c \cdot g(n)$$

$6n^2$ is $o(n^2)$

Set $c = 7$ Fix $N = 1$.

$$6n^2 \leq c \cdot n^2 \geq 7 \cdot n^2$$

big-Theta: $f(n) = \Theta(g(n))$

② logarithms: useful identities

Find it in your discrete math reference, ie

$$\begin{aligned}
 \log_b(xy) &= \log_b(x) + \log_b(y) \\
 \log_b\left(\frac{x}{y}\right) &= \log_b(x) - \log_b(y) \\
 \log_b(x^y) &= y \log_b(x) \\
 \log_b(\sqrt[y]{x}) &= \frac{\log_b(x)}{y}
 \end{aligned}$$

Recall Dfn: $\log_a b =$ exponent you take a to in order to get b

$$\log_a b = x \Leftrightarrow a^x = b$$

Identities: how do exponents behave?

$$2^x \cdot 2^y = 2^{x+y}$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\frac{2^x}{2^y} = 2^{x-y} = 2^{x-y}$$

$$(2^x)^y = 2^{xy} = (2^y)^x$$

$$2^{\log_2 n} = n$$

"log"

$$\ln = \log_e$$

$$\lg = \log_2$$

Another:

$$\log_a b = \frac{\log_x b}{\log_x a} \text{ with any base } x$$

Use it: Show $8 \log_{10} n \leq O(\log_2 n)$:

$$8 \log_{10} n = 8 \left(\frac{\log_2 n}{\log_2 10} \right)$$

$$= \frac{8}{\log_2 10} \cdot \log_2 n$$

Set $C = \frac{8}{\log_2 10} + N = 10$

then $8 \log_{10} n \leq C \cdot \log_2 n$
(=)

③ Summations:

again, your discrete math book has a table. Find it. Love it.

Ex:

Helpful Summation Identities	
$\sum_{i=1}^n c = nc$	for every c that does not depend on i (1)
$\sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2}$	Sum of the first n natural numbers (2)
$\sum_{i=1}^n 2i - 1 = n^2$	Sum of first n odd natural numbers (3)
$\sum_{i=0}^n 2i = n(n+1)$	Sum of first n even natural numbers (4)
$\sum_{i=1}^n \log i = \log n!$	Sum of logs (5)
$\sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$	Sum of the first squares (6)
$\sum_{i=0}^n i^3 = \left(\sum_{i=0}^n i\right)^2 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$	Nichomacus' Theorem (7)
$\sum_{i=0}^{n-1} a^i = \frac{1 - a^n}{1 - a}$	Sum of geometric progression (8)
$\sum_{i=0}^{n-1} \frac{1}{2^i} = 2 - \frac{1}{2^{n-1}}$	Special case for $n = 2$ (9)
$\sum_{i=0}^{n-1} ia^i = \frac{a - na^n + (n-1)a^{n+1}}{(1-a)^2}$	(10)
$\sum_{i=0}^{n-1} (b + id)a^i = b \sum_{i=0}^{n-1} a^i + d \sum_{i=0}^{n-1} ia^i$	(11)
	(12)

Notation reminder: $\sum_{i=1}^n f(i) = f(1) + f(2) + \dots + f(n)$
 (loops!)

Note: $f(i)$ is any function!
 n times

$$\sum_{i=1}^n 5 = (5 + 5 + \dots + 5) = 5n = O(n)$$

$$\sum_{i=1}^n \sum_{j=1}^i j = \sum_{i=1}^n \left[\sum_{j=1}^i j \right] = \sum_{i=1}^n i = \frac{n(n+1)}{2} = O(n^2)$$

τ nested for loops

$$\sum_{i=1}^n \sum_{j=1}^i (\log_2 n) = \sum_{i=1}^n i \cdot \log_2 n$$
$$= \log_2 n \cdot \left[\sum_{i=1}^n i \right] = O(n^2 \log_2 n)$$

$$\sum_{i=1}^n i = 1 + 2 + 3 + 4 + \dots + (n-1) + n$$

Diagram illustrating the sum of the first n natural numbers. The sum is shown as a series of terms: 1, 2, 3, 4, ..., (n-1), n. The term 1 is circled, and the term n is circled. A bracket under the terms 1, 2, 3, 4, ..., (n-1) is labeled with the expression $\frac{n(n+1)}{2}$. A bracket under the term n is labeled with the expression n. A large bracket on the right side of the equation is labeled with the expression $\frac{n(n+1)}{2}$.

$$= \frac{n(n+1)}{2}$$

$$\sum_{i=1}^n i \cdot \log_2 n = \log_2 n + 2 \cdot \log_2 n + \dots + n \log_2 n$$

$$= \log_2 n [1 + 2 + \dots + n]$$

④ Induction:
There is a template! Fix what you induct on.
Base case: Show true for some small instances

Ind hypothesis: Assume true for all instances up to some size k

Ind. step: Show true for size $k+1$

Think of this as "automating" a proof:

$P(1)$
 $\forall k \geq 1, P(k-1) \Rightarrow P(k)$

Predicate logic view

Example
$$\sum_{i=1}^n F_i = F_{n+2} - 1 \quad \{ P$$

Recall F_n : $F_0 = 0$ $F_1 = 1$ $F_2 = 1$
 $F_3 = 2$ $F_4 = 3$...

$$\forall n > 1, F_n = F_{n-1} + F_{n-2}$$

Induction on n :

Base case: $n=1$ LHS: $\sum_{i=1}^1 F_i = F_1 = 1$

RHS: $F_{1+2} - 1 = F_3 - 1 = 2 - 1 = 1$ ✓

$P(1)$ is true

IH: $\forall k < n \rightarrow \text{eq. is true}$

$$\sum_{i=1}^k F_i \Rightarrow (F_{k+2} - 1)$$

$P(n+1)$

DS: Show true \leftarrow equality \rightarrow for n :

LHS: Consider $\sum_{i=1}^n F_i = (F_1 + F_2 + \dots + \cancel{F_n})$

$$= F_n + \left(\sum_{i=1}^{n-1} F_i \right)$$

$$= F_n + (F_{n+1} - 1)$$

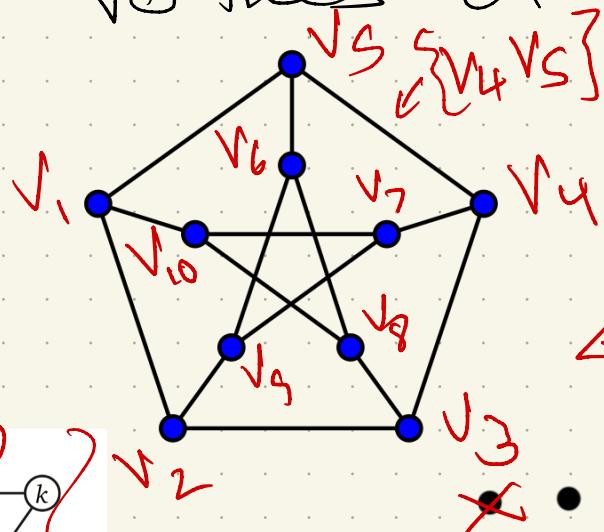
$n \rightarrow c_n$ use IH:

by def of F_n is $= F_{n+2} - 1$

Induction on structures:

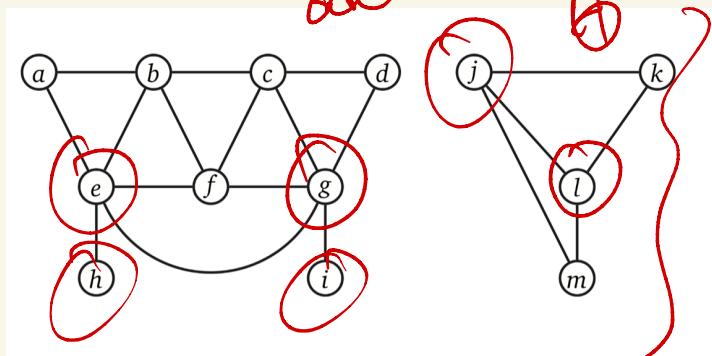
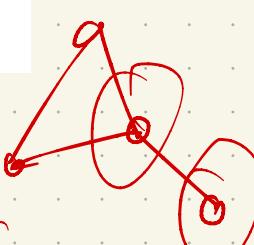
Consider graphs: $G = (V, E)$

Theorem: In any undirected graph, the number of vertices of odd degree is even.

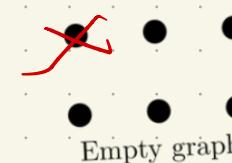
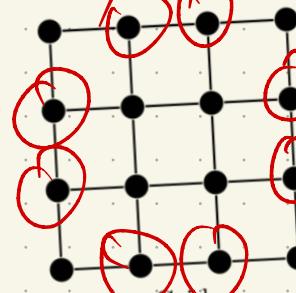


$$E = \{(u, v) \mid u, v \in V\}$$

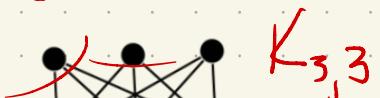
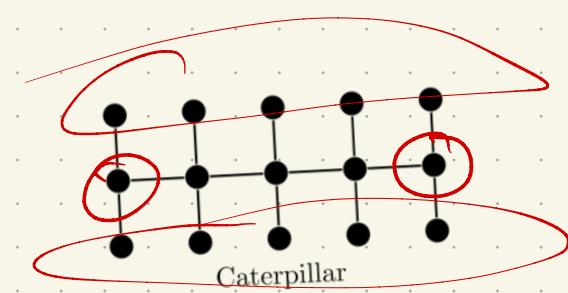
Examples:



Note here:
Induct on vertices
or edges



← all vertices have
degree = 3



Proof by induction on the number of edges:

Base Case: no edges (any # of vertices)

∴ Any graph with 0 edges has
all vertices with $\deg = 0$
⇒ even # of odd degrees ($= 0$)

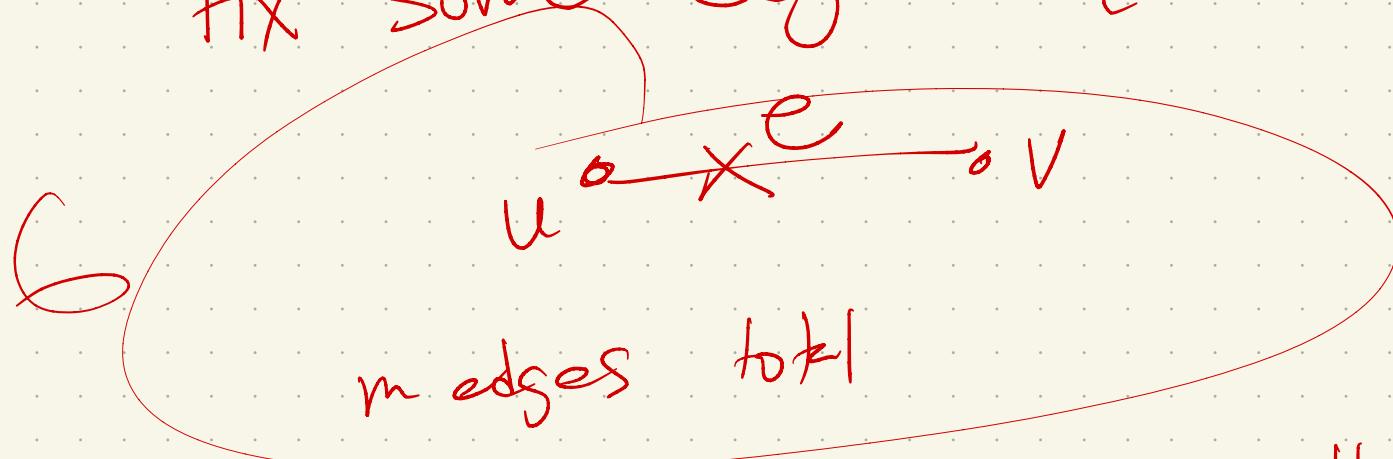
Inductive hypothesis:

Any graph with $0 \leq k < m$
edges has even # of vertices
with odd degree.
(any # of vertices)

Inductive Step:

Consider a graph with m edges
(Not in base case $\Rightarrow m \geq 1$)

Fix some edge $e = \{u, v\}$



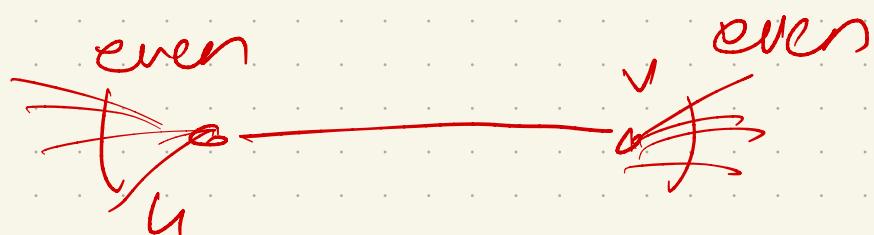
delete e
to get G'

By IH, G' has even # of odd degree vertices. \rightarrow call this X .

What if we re-add e ?

Cases:

- u and v had even degree in G'

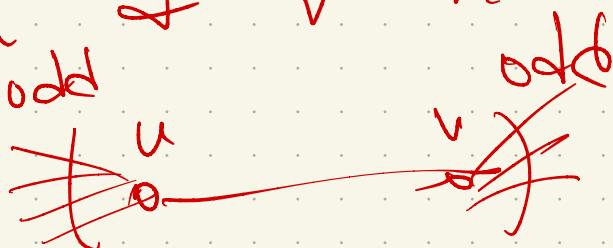


Now, both have odd degree

$x+2$ odd deg. vertices

x is even, so is $x+2$. ✓

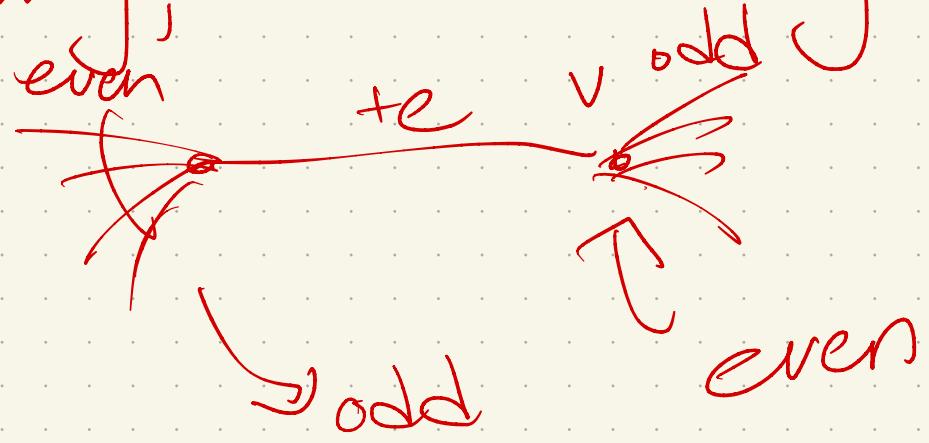
- u & v had odd degree in G'



⇒ now both even

So G has $x-2$ odd deg. vertices ⇒ still even.

• wlog, u even deg & v odd deg



\Rightarrow still \times odd deg vertices

\Rightarrow Even # of odd degree.

Another: Every rooted binary tree of height h has $\leq 2^{h+1} - 1$ nodes

Recall: $\text{height}(\mathcal{T}) = \{$

Proof:

③ Pseudo code + runtime

Discrete math examples (from Rosen textbook)

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

```
procedure max( $a_1, a_2, \dots, a_n$ : integers)
  max :=  $a_1$ 
  for  $i := 2$  to  $n$ 
    if  $max < a_i$  then  $max := a_i$ 
  return max{max is the largest element}
```

This book:

```
FIBONACCIMULTIPLY( $X[0..m-1], Y[0..n-1]$ ):
  hold ← 0
  for  $k \leftarrow 0$  to  $n+m-1$ 
    for all  $i$  and  $j$  such that  $i+j = k$ 
      hold ← hold +  $X[i] \cdot Y[j]$ 
     $Z[k] \leftarrow hold \bmod 10$ 
    hold ←  $\lfloor hold/10 \rfloor$ 
  return  $Z[0..m+n-1]$ 
```

Pseudo code conventions here:

Variable assignment:

Boolean comparison:

Arrays: A[0..n-1]

- each element:

Loops:

Pseudocode format:

In a pinch, pretend you're in Python
or Ruby → high level + readable.

I realize this is not a "definition"-
that is the point!

It's about effective communication.

Next reading: recursion

Most of you indicated you'd seen it before. Topics here:

- Towers of Hanoi
- Merge sort
- Recap of recurrences & "Master theorem"
- Linear time Selection
- Multiplication (again)
- Exponentiation

A high level note on recursion:

Recursion really can be simpler +
useful!

Often depends upon the language
and setup.

Counter-intuitive, but that's often due
to lack of practice

Often considered slower?

Recursion

- If you can solve directly (usually because input is small), do it!
- Otherwise, reduce to simple (usually smaller) instances of the same problem.

Recursion Fairy

- Helps to solidify that "black box" mentality, so you don't keep unpacking the next level.

(She's also called the "induction hypothesis".)

Classic example

↙ Our book

QUICKSORT($A[1..n]$):

if ($n > 1$)

 Choose a pivot element $A[p]$

$r \leftarrow \text{PARTITION}(A, p)$

 QUICKSORT($A[1..r - 1]$) «Recurse!»

 QUICKSORT($A[r + 1..n]$) «Recurse!»

PARTITION($A[1..n], p$):

 swap $A[p] \leftrightarrow A[n]$

$\ell \leftarrow 0$ «#items < pivot»

 for $i \leftarrow 1$ to $n - 1$

 if $A[i] < A[n]$

$\ell \leftarrow \ell + 1$

 swap $A[\ell] \leftrightarrow A[i]$

 swap $A[n] \leftrightarrow A[\ell + 1]$

 return $\ell + 1$

Algorithm 1 Quicksort

```
1: procedure QUICKSORT( $A, p, r$ )
2:   if  $p < r$  then
3:      $q = \text{PARTITION}(A, p, r)$ 
4:     QUICKSORT( $A, p, q - 1$ )
5:     QUICKSORT( $A, q + 1, r$ )
6:   end if
7: end procedure
8: procedure PARTITION( $A, p, r$ )
9:    $x = A[r]$ 
10:   $i = p - 1$ 
11:  for  $j = p$  to  $r - 1$  do
12:    if  $A[j] < x$  then
13:       $i = i + 1$ 
14:      exchange  $A[i]$  with  $A[j]$ 
15:    end if
16:    exchange  $A[i]$  with  $A[r]$ 
17:  end for
18: end procedure
```

QuickSort Pseudocode Example

↙ Another version