
Algorithms& Complexity , Spring26

Dynamic
Programming

Recep
· HW1 posted , due next ThursdayI
↳ Again, written HW , +groups

of 13

· Reading on Thursday,
↓next week's will be up by then

Text Segmentation
↳ In Backtracking & Dynamic Programming
Ex a "language", so can recognize

"Words"
.

E: -English text
- Genete datesin

i

So : Isword(s) is given,
rO(l) hime
-

Aside : reasonable ?[Usually hashed dictory.

Backtracking :
Ex sufix A : Tto deade on.

To solve Splittable [i . n] :

-For every jei+ 1
, n]

deck isWard [A[.j]]
If it is,

check Splittable [ju .. n]

Code :

- Ti
-

&urS(n)S(i) +On
exponental

Issue w/ passing arrays : ⑰
don't do it g

assume array is global #in
a pass

indices

Passingby index/ptr/globallet
-

-

Formalize an (ugly ?) recursion :

* and E

T
OR

And then translate
to code :

Why 3
already exponental anyway , right

?
F-t

Observation :
I

Consider stack point of view,I
all of

These function cells :

E

*A
Da

So : For any ke[l .. n], might
be

-

calling Splittable(1) many
times !

Questin : Can its value change?
-

Cie is it a pare function? return
↳ one whose
doesn' ever charge

Shouldn'compute the
some

thing twice!

Potential Improvement
Once you

calculate Splittable (k)
once

,
store it.

Then
,

can just look it up in a
data structure ? S[1.. n] of

↳ array
Here : booleans

↓ Change :
-

check :f already
Then : computed a look&

#n] If so
·

En Ei It up
do

An] Gotherwise,
- recursion

Better yet :
- Splittable (n) is

trival E
Save T/F

TIF

- Splittable (n-1)only
needs Splittible (n)

- Splittable (n-2) only
needs n -n-2

S[1 .. n] *

So: memorize
: how to store data ?

forien down to 1
calculate Sittable[i] (based or

=Omis
- later values

return Sp liHeble[1]

for itn down to 1

S[i]- false

for joi to n
If IsWord(i,j) and S[jt]

stij-true
Nat end of for loop, ski)

is

true only if Ati.n]
issplttable

return S[I]

Aside : Fibonacci Computations

-

Illustrates same pipelinedata structure !)

Plus
, sec :

O(n)
less

for loop sti space
versio

His 9 section : Can actually do better !

(91]= [FF E↑ CFancy math tricks)
-

o

3[ii][i] =[] [L][][01]I

!
f[01]T

Proof: induction/V n=1
Base case :

Itti assume [Oiyn-90] =[]
IS :

[1]"[i) =[i](017m)F

Runtime: time to compute [i]n
↳ back to Chapter1

or

On
--
C

Either way :
M(n) = MCE)+ O(1) multipleations

= Ollogn)

But wait - En is exponential ! Specifically,-

Fr- ,
p= -
- 4=

So... how many
bits to write it down ?

number be logan
16 + 10000

a bit

Clarification :
-

use O(n)
our earlier algorithms

additions or subtractions

If a #164-bits-sure
!

But larger ?
Let M(n) = time to multiply 2

Here: TIn)=T+) n-digit #S

Best known M(n) : Onlogn) 299
Casting result)

so Thn) = O(nlog n)
assume OCI) time

Shell still usually to add/multiply]

Fibonacci Recap :

good/bad
· "Simple" yet interesting example

powerful this concept· Illustrates nort

Downside :
↳ Savingbotheca

cana

Not always so obvious
how to convert

the recursion
into an iterative

structure!

Advice
Start with the recursion !

↳ Use it to prove correctness.

Then
,
for code :

Start at base cases .

Save them
S

Build up "next"
level:

the recursions that call base case(s).

Try to formalize this in a loop+-

data structure format.

Fly : analyze both space
a time

Rant aboutgreed :

-

When they work
, "greedy" strategies are

very
fast- effective !

But- often such intuitive strategiesil.
Dynamic programming

abacktracking will

alway
work.-s

We'll study both , but better
to start here.

Next reading : Longest increasing
subsequence (again) recurrence

or, why he did all those crazy-
versions) subsequenceit

Recap : Back tracking version

Recursion - A/71 ... 1
E

8
I J

H

At each index
de

:

A[j] in subsequence
· could inclus
Cif it is larger than lastneed to T element we

included)

knowmet· could skip a not include Ati)
in Subsequence

u
Result : "O
-

Need 2 things in recursion ! AD
Store last "taken" index i.

Consider including A[j] :

· If A[i] = A[j] : can't
add A[j]
&

↳ must skipJ
· If Ali) is less

:

ACj]
could include

Recursion : or not
- &

Ycartj]S

-

isto

↑ E
include skip

Code version : don't pass aways! Why
?

plus the
"main" :

-mustskiP -

(O
-

:
Mu(2,3) ↓
ED(1,2)
3I Lis(0 ,]
-

stack

I 23456

Example : A : [3, 10, 2 , 11
,
5
,
7]

0 123456
↳ [-00, 3, 10 , 2 , 11 , 5 ,7]

(0, 1)

withey \n03 = r]3]
LIS (1 ,2) Lis(02)fas--

without 10withi I
[13 .
1withy port

LS(2,3)-⑮)3)① LIS(0, 3)
T-,10] 20]

-

no 2/ qui]
E computed

no 2/
Lis (2 ,3)

already
twie
...

Question : Is this function pre? does o?answer
Yes chang

Memorize: What are we recomputing?

correct
Ekidlorect

-
It Lis

How should we

Store?

values
1 ijen

1.. In
(j)

nxn of↳Willstarray ies Eninteg
N

from joursand

Now
,
can we do the same trick as

Ebonacci memorization, a
convert to

something loop-based?

Aside Why should we
? (memory

!)
-

:

I
for jan down

to

for it I to a

Rethink :
-

to fill in Lesldo I need?
g

elements one Column j- 08
to right

IResult:

↓

Next time : Edit distance

HUGE in bioinformatics !
-

One of the basic tools in sequence alignment
.

(I have a book with an entire chapter on
how to optimize.)

Also : spell checkers ,
word prediction, etc.

From backtracking
mindset : how to

think recessively ?

Consider 2 last characters :

ALGORITM

ALTRUISTIC

Options :

Example: TGCAFATTCCGATto

t recursively
Elli

Input : A[l .. m]
& B[loon]

Edit) , (

=

miS

So :

What do we store in ?

Thow can we adopt loop?

Final code :

