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Combining the three cases above gives us the f()llo\\’ing “master theorem”.

1
Theorem 1 The recurrence v jl\%}‘ i / 4

Q1) =75 C@(/QLL % enes
where a. b, c. and k are all constants. solves to: [/ &@g j g

€ O(n") ifa<tt L oo = ij
T(n) € O(n*logn) ifa = b W N Cco
T(n) € O(n'%?) ifa > b 0.5 > o MEs

THEOREM 2  MASTERTHEOREM Let f be anincreasing function that satisfies the recurrence relation

f(n)=af(n/b) + cn? =
v
whenever n = b¥, where k is a positive integer, a > 1, b is an integer greater than 1, and ¢ Cﬁ
and d are real numbers with ¢ positive and d nonnegative. Then — ‘
V=

0(n?) ifa < b4,
f(n)is 04 logn) ifa = b,
O %) ifa > b?.
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| MoMSELECT(A[1 .. ﬁ], k) ——
if n < or whatever))
use brute force——

else )
m ._@\7 \Jr\[{ ’ V\) n‘—.r\“’[‘
fori #91 tom
@ (\/\(\‘v i 1 EDIANOFFIVE(A[5i —4..5i]) ((Brute force!)) (\.\
0 MomSELECT(M[1..m {(Recursion!)) A=— j)
Y\ r < PARTITION(A[1..n],mom k

— "
VV‘\R/ 6 if k<r
return MOMSELECT(A[1..r —1],k) ((Recursiompy———
Z B else if k> r = OC \f\)

return MOMSELECT(A[r + 1..n],k—r) ((Recursion!))
else —

T return mom
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Figure 2.3. The complete recursion tree of Gauss and Laquiere’s algorithm for the 4 queens problem.

PLACEQUEENS(Q[1..n],r):

ifr=n+1 : ] CO\U
printQ[1..n
else CfM/ﬂ_/

forje—1ton A NS av\_a-)
/ %?p J

legal < TRUE

fori < 1to
r(Q[i]=J'+r—i) or (Qi]=j—r+i)

egal < FALSE
if legal
Qrl«j

PLACEQUEENS(Q[1..n],r + 1) ((Recursion!))

P
Figure 2.2. Gauss and Laquiére’s backtracking algorithm for the n queens problem.
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Example: Odds and Evens

Consider the simple game called odds and evens. Suppose that player 1 takes evens and player 2 takes odds. Then, each
player simultaneously shows either one finger or two fingers. If the number of fingers matches, then the result is even, and
player 1 wins the bet ($2). If the number of fingers does not match, then the result is odd, and player 2 wins the bet ($2). Eacl

player has two possible strategies: show one finger or show two fingers. The payoff matrix shown below represents the payof
to player 1.

Payoff Matrix

Player 2

Strategy

1
Player 1 — —~

2
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— SPLITTABLE(A[1..n]): 0

ifn=0 Y

return TRUE @ 4 éj \

fori—1ton

if ISWORD(A[1..1]) \TJ

if SPLITTABLE(A[i + 1..n]) \/—j

return TRUE

return FALSE
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Given an index i, find a segmentation of the suffix Ai..n

%f\w\a\t%c 234 (\/5(7)> reCasen

TRUE ifi>n

Splittable(i) = { »
g \/ (ISWORD(i,j) A Splittable(j + 1)) otherwise
j=i

((Is the suffix A[i .. n] Splittable?))
SPLITTABLE(1):
ifi>n

return TRUE
L Han Founsleke
if IsWorD(i, j)

,b C &Q) v if SPLITTABLE(j + 1)
© return TRUE

return FALSE
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((Is the suffix A[i ..
SPLITTABLE(1):

ifi>n

n] Splittable?))

return TRUE

for j<—iton

if IsWorb(i, j)
if SPLITTABLE(j + 1)

return FALSE

return TRUE
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