
Complexity& Algorithms , Spring 2026

Greedy
Approximation

Rap
· HW1 : due Thursday
· Reading this time

: thoughts?

· Today : Finish dynamic programming,

↑ on to greed !

Optimal Binary search trees
froot

x
=k?

+1

O-15Recall : BSTs. Q
nanodes +/-X ocog

Time to search for⑱
a value k in T :

-

O(depth of K
inT)

Goal : If I know how

look- up each
value inmanytheyola

perfect BST?
-

Question : Why not balanced?4
So

F100 1 2 8 freg .

-

-X2 34 5 values
-

d #

balance ⑨
F

:I
⑯

&

⑤
#↳ ⑮
-

time : ⑤time:
200 +3+ 1 + 4+24 ②+ 16 + 6

+

4 +5
= 232

= 1314232

General problem : Given XC .. n] +Fl . n],
where X[i] has Fli] searches, compute

mal BST:

minimum cost = [inT)

why?odepth ot

Intraction : put may freg, on top
↳GREED !

(No)

Last Chapter AssumeA is sorted.

- X-

↓
-

↳ O
↳

Why? Let root
be r 8

rooton

Pay
for the

⑭
> n

every query
L/ --
~↳%⑭va O

Essentially regrouping
: [F[i]. depth
i
= [(frequencies of nodes

levels K at level =K)

Recursive (backtracking) strategy

=>

S
Choose best root

How to memoize?

Remember input :

In
↑

build best free here

Everyone
searches at root

↳ precompute

Let F(i][]=fj]
Now :

= Optcost(i ,1) =50
-

FliJ[k]+

memoze : Oi = ken ·So : 21 table !

Each OTi][k] needs:
- FliJ[k]
- and

His picture (prettier) :

So :
-

Time:

Space:

Other ones in reading :
- Subset Sum : OnT)

but
-

- Independent
Sets in trees :

!
Not an array need to store values

For each
node,

↳ Use the tree

classical greedy algorithms
Some algorithms on be

solved

correctly 2 fast)
with a greedy

approach .

E : Cans a making change
In the US

: 11
,
Se , 100,

25k

If I want to give
T2E in change,

fewest cans3
how can I

do it using

When greed seems to work
,
how to prove?

~

· Assume optimal is different than

greedy
· And the "first" place they differ
· Argue that we can exchange the two

without making optimal worse.

-> there is no "first place" where they
must differ, so greedy in fact
is an optimal solution.

Proof techniques :

Can example:

Suppose greedy of opt.

opt :

greedy :

Dynamic Programing vs Greedy
Dyn . pro

: try all possibilities
↳ but intelligently !

In greedy algorithms , we avoid
building all possibilities

-

How?
Some part of the problem's
structure lets us pick a local

"best" and have it lead to a

global best.

Doesn't always work !

Examples :
-Edit distance :

- Optimal BSTs :

Greedy approximation
While greed can work,

it often fails :

- but - a useful
heuristic!

Still need to find the right greedy-
strategy , though .

(and then some proof of approximation
Nato)

↳ Not obvious !

First example
Vertex cover : Given a graph G = (UE),
choose a set of vertices SEV such

that every
eeE is incident to some

vES
.

Examples :

How hard?

Easy to find a
cover :

Challenge :

Note: In gened, NP-Hord . (More later)

One idea : Use vortices with high
degree .

Why ?-

-gorithm:

IGreedy Question: does

set ?

? In
Tever givthe

Question : how to make it fal ?

Need high degree vertices that
are not optimal

.

-

·
O
-o

↳
-

But :

Can we prove
this is an approximation

to optimal?

in 1C1 > /Opt (see last slide)

but IC = C : /OPTI ?

We : Nothing in our algorithm fells
US what to aim for !

prev - example

Let's check some notation here...

Pfus for Approx :

Let OPT(x)= value of optimal solution

A(x) = value of solution computed by
algorithm A

A s an <(n) -approximation algorithm if.

①x(n)

② = ((n)

& (n) is called approximation factor.

Back to VC

Question : is if a 2approximation?

No
.
(But not obvious ..)

Construction : bipartite graph G = (V, E)

R = where V= LuR
↳=

For R : for each
Wr < 2

.

n
,

add Let
v vertices each degree iJ S

, a connect to differentD -

vertices In L

↳ call these Ri =R

Eng-d
L of
* Ru

sizemy Tag=
max degree ? R

What does our algorithm do?

Highest degree Verte?
↳In R , one

of

degree n .
When removed :

So
,
in end
,
all R voices chosen.

What is IRI ?

IRl=Ril=Y
3

Recall that "cheat sheet" :

d

So
,
back to <(n) stuff :

IRI = n(Hn-2)
12 = n

so
, greedy factor <(n)I
=

Note : lower bound! Can we show it always
gets at least this?

dy algorithm alwaysTheorem Gree

chooses a set of size= (logn) ·OPT
To prove

: Rewrite slightly :

Let Gi = graph in it steration.

Let di = max degree m Gi

Let CB = optimal vertex cover in
6

(which must exist but which
we

don't know)

We do know that
*
is a

Vertex cover for each Gi.

So : [degree of v in G :

veC
= edges in Gi

Why?

sinceEdegoi (v) = /ECGill

=> average degree in Gi of

-

GB Is Gi
Why?

But : this means max degree in
Gi

Is at least this size.

=> di=

Also : # of edges in Gi decreases

di
for jai

Now
,

consider first OPT iterations

of loop :

6- G+G .. --> GopT
-

How many edges get
removeda

[di ?
i= 1

So:diE/E(Gort1
i= 1

But : IE(Gort = IE(1-di
Why?

Crazy sums:=IE)-:

In other words :

removes at least
OPT iterations

half the edges.

IE) -> E -

keep going
: OPT iterations more

How many
times ?

After log (IED)
rounds

,
done.

round?
How many per

Runtime a space
:

A different approximation - simpler idea :

-pick any edge I add its endpoints to

the cover

- delete all "covered" edges
- Repeat

Seems worse
,

right?

Theorem
Dumb vertex cover is a 2-approximation.

Proof Let C be greedy cover here,
-

↓ C* be OPT .

For each edge e= Suv]
:

un ?

