

Complexity & Algorithms, Spring 2026

Greedy
Approximation

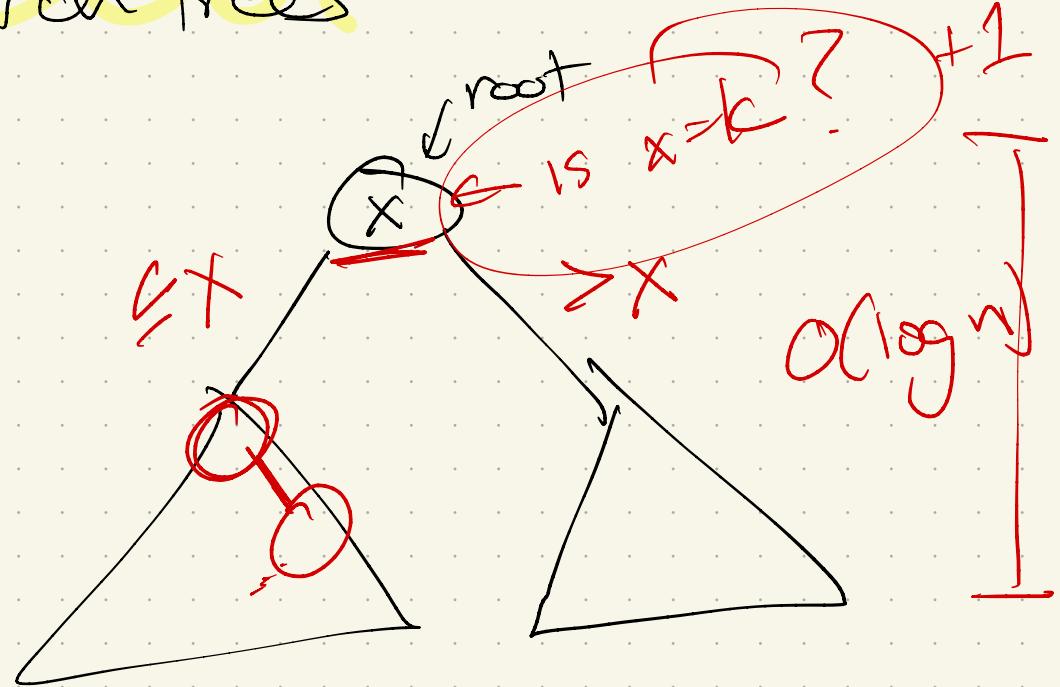
Recap

- HW1: due Thursday
- Reading this time: thoughts?
- Today: Finish dynamic programming
+ on to greed!

Optimal Binary Search trees

Recall: BSTs.

n nodes



Time to search for
a value k in T :

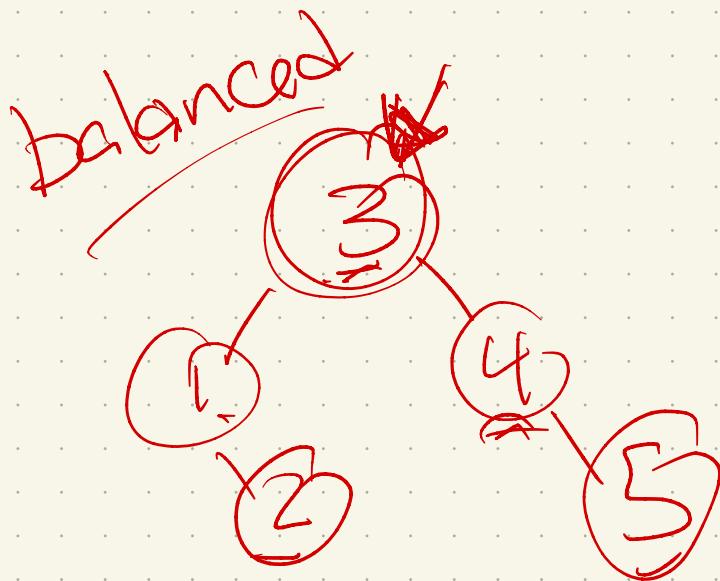
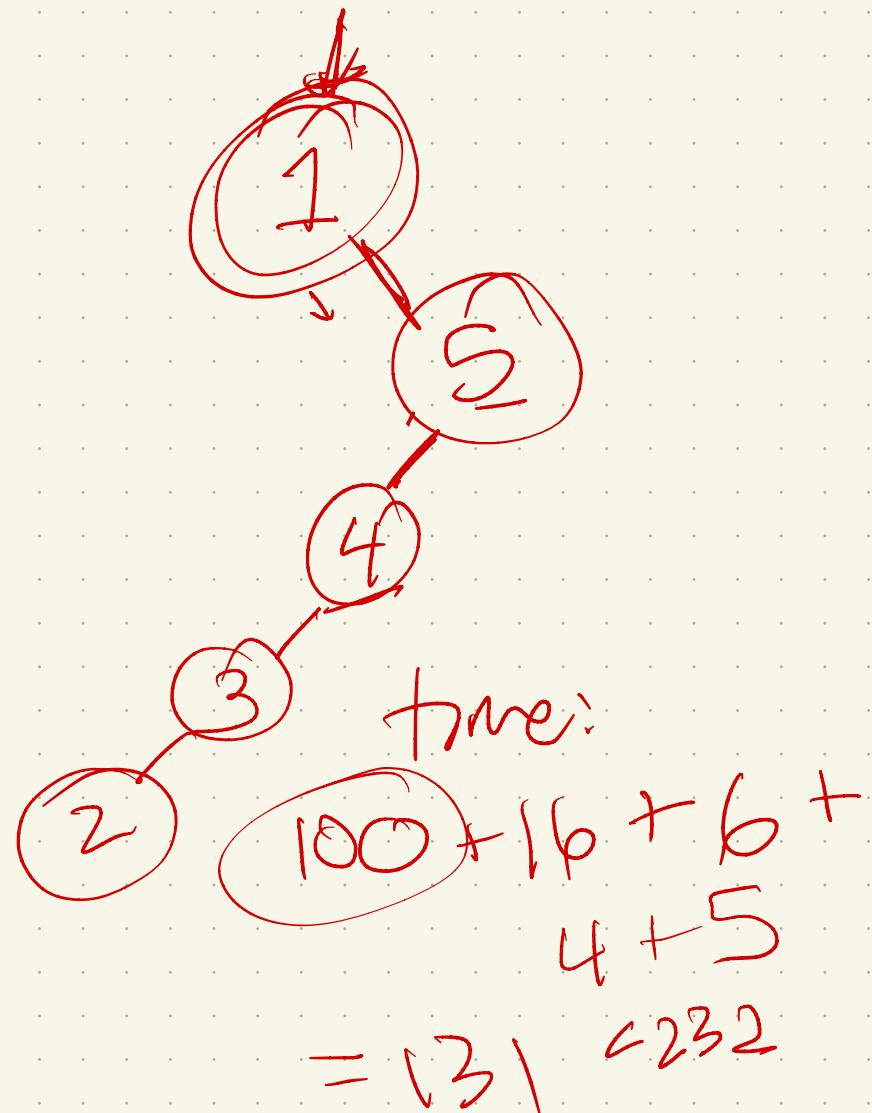
$O(\text{Depth of } k \text{ in } T)$

Goal: If I know how many trees you'll
look up each value in T , can I build the
perfect BST?

Q: Why not balanced?

F	100	1	1	2	8
→ X	1	2	3	4	5

freq.
values



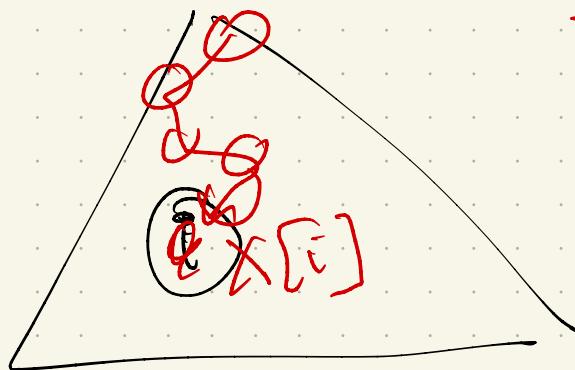
$$200 + 3 + 1 + 4 + 24$$

$$= 232$$

General problem: Given $X[1..n] + F[1..n]$,
where $X[i]$ has $F[i]$ searches, compute
optimal BST:

$$\text{minimum cost} = \sum_i F[i] \cdot (\text{depth of } X[i])$$

Why?



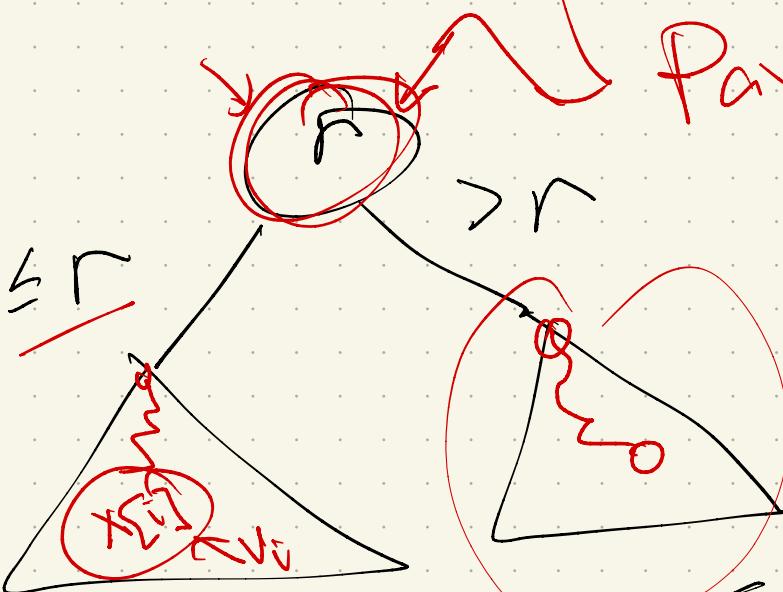
depth of
 $X[i]$ in T

Intuition: put max freq. on top
→ GREED!
(NO)

Last Chapter Assume X is sorted.

$$\text{Cost}(T, f[1..n]) = \sum_{i=1}^n f[i] + \sum_{i=1}^{r-1} f[i] \cdot \#\text{ancestors of } v_i \text{ in } \text{left}(T)$$
$$+ \sum_{i=r+1}^n f[i] \cdot \#\text{ancestors of } v_i \text{ in } \text{right}(T)$$

Why? Let root be r :



Pay for the root on every query

Essentially regrouping:

$$\sum_i f[i] \cdot \text{depth}$$

$$= \sum_{\text{levels } k} (\text{frequencies of nodes at level } \geq k)$$

Recursive (Backtracking) Strategy

$$\begin{aligned} \text{Cost}(T, f[1..n]) = & \sum_{i=1}^n f[i] + \sum_{i=1}^{r-1} f[i] \cdot \# \text{ancestors of } v_i \text{ in } \text{left}(T) \\ & + \sum_{i=r+1}^n f[i] \cdot \# \text{ancestors of } v_i \text{ in } \text{right}(T) \end{aligned}$$

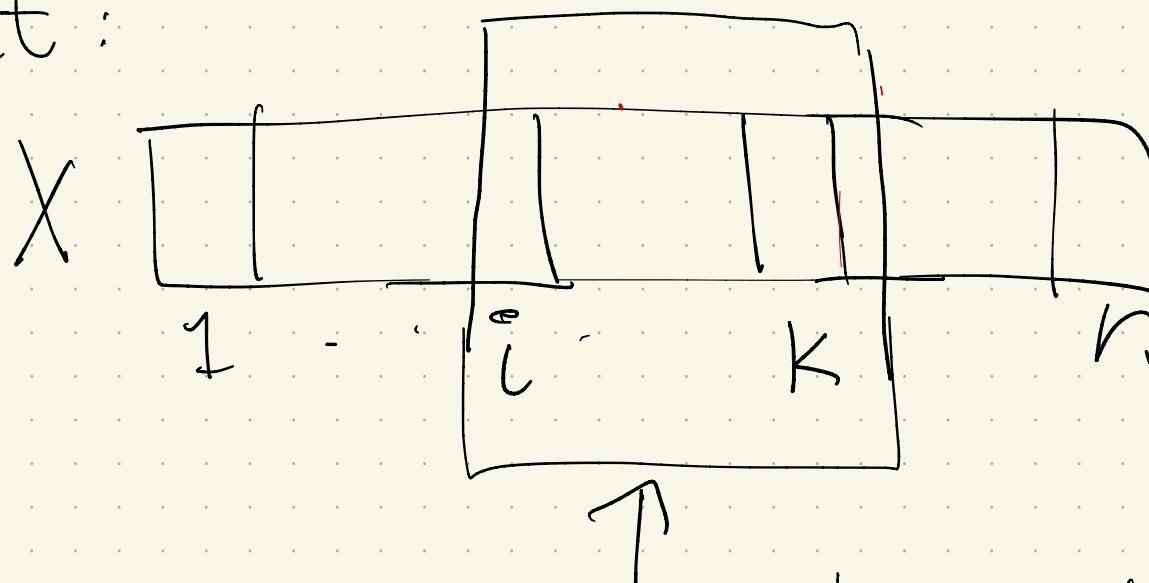
$$\text{OptCost}(i, k) = \begin{cases} 0 & \text{if } i > k \\ \sum_{j=i}^k f[j] + \min_{i \leq r \leq k} \left\{ \text{OptCost}(i, r-1) + \text{OptCost}(r+1, k) \right\} & \text{otherwise} \end{cases}$$

Choose best root!

How to memoize?

$$OptCost(i, k) = \begin{cases} 0 & \text{if } i > k \\ \sum_{j=i}^k f[j] + \min_{i \leq r \leq k} \left\{ OptCost(i, r-1) + OptCost(r+1, k) \right\} & \text{otherwise} \end{cases}$$

Remember Input:



Everyone searches at root
↳ precompute

Let $F[i][k] = \sum_{j=c}^k f[j]$

Now:

$$OptCost(i, k) = \begin{cases} 0 & \text{if } i > k \\ \sum_{j=i}^k f[j] + \min_{i \leq r \leq k} \left\{ OptCost(i, r-1) + OptCost(r+1, k) \right\} & \text{otherwise} \end{cases}$$

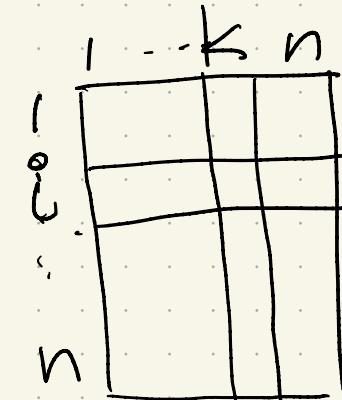
$$\Rightarrow OptCost(i, k) = \left\{ \begin{array}{l} 0 \\ F[i][k] + \end{array} \right.$$

Memoize: $0 \leq i \leq k \leq n$

So: 2D table!

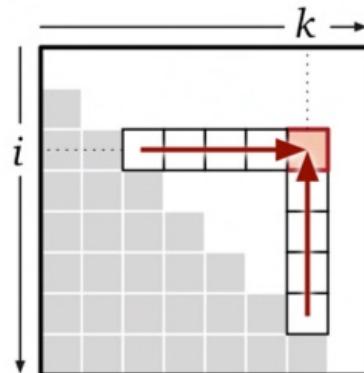
Each $O[i][k]$ needs:

- $F[i][k]$
- and



His picture (prettier):

$$OptCost(i, k) = \begin{cases} 0 & \text{if } i > k \\ F[i, k] + \min_{i \leq r \leq k} \left\{ OptCost(i, r - 1) + OptCost(r + 1, k) \right\} & \text{otherwise} \end{cases}$$



So:

```
OPTIMALBST( $f[1..n]$ ):  
  INITF( $f[1..n]$ )  
  for  $i \leftarrow 1$  to  $n + 1$   
     $OptCost[i, i - 1] \leftarrow 0$   
  for  $d \leftarrow 0$  to  $n - 1$   
    for  $i \leftarrow 1$  to  $n - d$     «... or whatever»  
      COMPUTE $OptCost(i, i + d)$   
  return  $OptCost[1, n]$ 
```

Time:

Space:

Other ones in reading:

- Subset Sum: $O(nT)$
but

- Independent Sets in trees:

Not an array!
For each node, need to store values

↳ Use the tree

Classical greedy algorithms

Some algorithms can be solved correctly (& fast) with a greedy approach.

Ex: Coins & making change

In the US: 1¢, 5¢, 10¢, 25¢

If I want to give 72¢ in change,
how can I do it using fewest coins?

When greedy seems to work, how to prove?

- Assume optimal is different than greedy
- Find the "first" place they differ.
- Argue that we can exchange the two without making optimal worse.

⇒ there is no "first place" where they must differ, so greedy in fact is an optimal solution.

Proof techniques:

Con example:

Suppose $\text{greedy} \neq \text{opt}$

$\text{opt}:$

$\text{greedy}:$

Dynamic Programming vs Greedy

Dyn. pro: try all possibilities
→ but intelligently!

In greedy algorithms, we avoid building all possibilities

How?

Some part of the problem's structure lets us pick a local "best" and have it lead to a global best.

Doesn't always work!

Examples:

- Edit Distance:

- Optimal BSTs:

Greedy approximation

While greed can work, it often fails.

- but - a useful heuristic!

Still need to find the right greedy strategy, though.

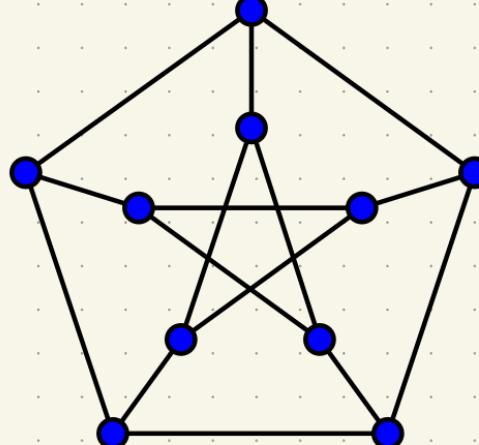
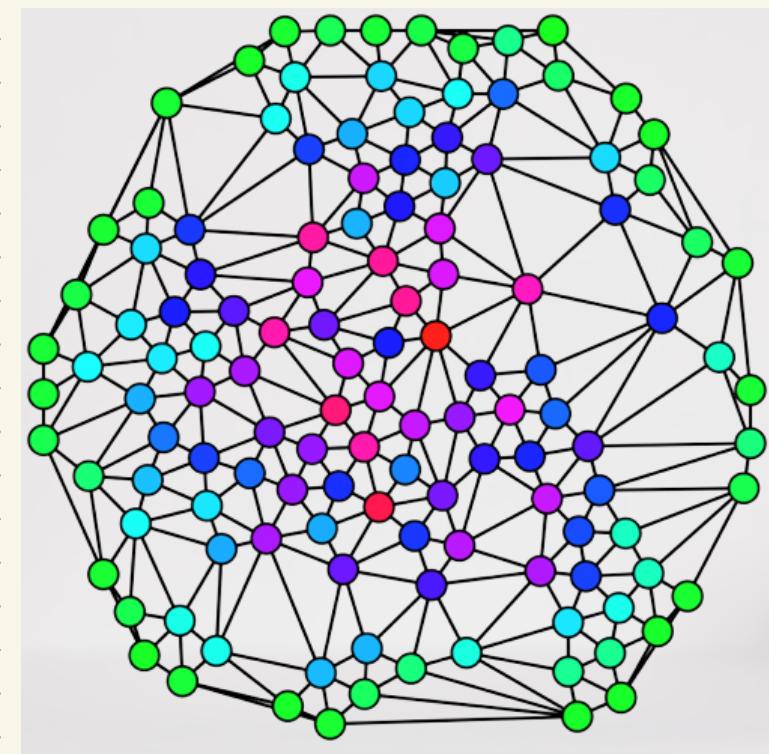
(and then some proof of approximation ratio)

→ Not obvious!

First example

Vertex cover: Given a graph $G = (V, E)$, choose a set of vertices $S \subseteq V$ such that every $e \in E$ is incident to some $v \in S$.

Examples:



How hard?

Easy to find a cover:

Challenge:

Note: In general, NP-Hard. (More later...)

One idea: Use vertices with high degree.

Why?

Greedy algorithm:

GREEDYVERTEXCOVER(G):

$C \leftarrow \emptyset$

while G has at least one edge

$v \leftarrow$ vertex in G with maximum degree

$G \leftarrow G \setminus v$

$C \leftarrow C \cup v$

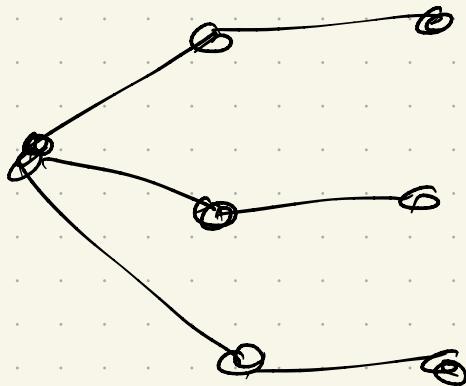
return C

Question: does this ever give the min set?

Why?

Question: how to make it fail?

Need high degree vertices that
are not optiml.



But:

Can we prove this is an approximation
to optimal?

ie $|C| > |Opt|$ (see last slide)

but $|C| \leq \alpha \cdot |OPT|$?

Note: Nothing in our algorithm tells
us what to aim for!

prev. example \Rightarrow

Let's check some numbers here...

Dms for Approx:

Let $OPT(x)$ = value of optimal solution

$A(x)$ = value of solution computed by algorithm A

A is an $\alpha(n)$ -approximation algorithm if.

① $\frac{OPT(x)}{A(x)} \leq \alpha(n)$

② and $\frac{A(x)}{OPT(x)} \leq \alpha(n)$

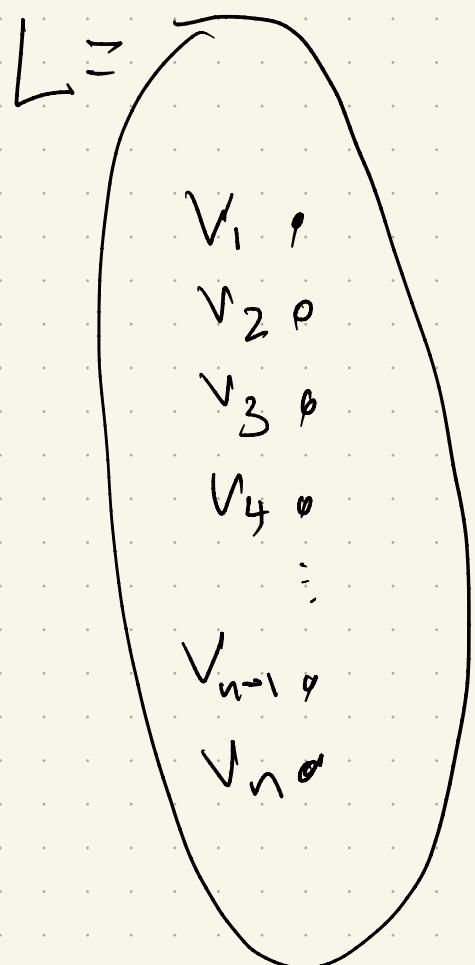
$\alpha(n)$ is called approximation factor.

Back to VC

Question: Is it a 2-approximation?

No. (But not obvious.)

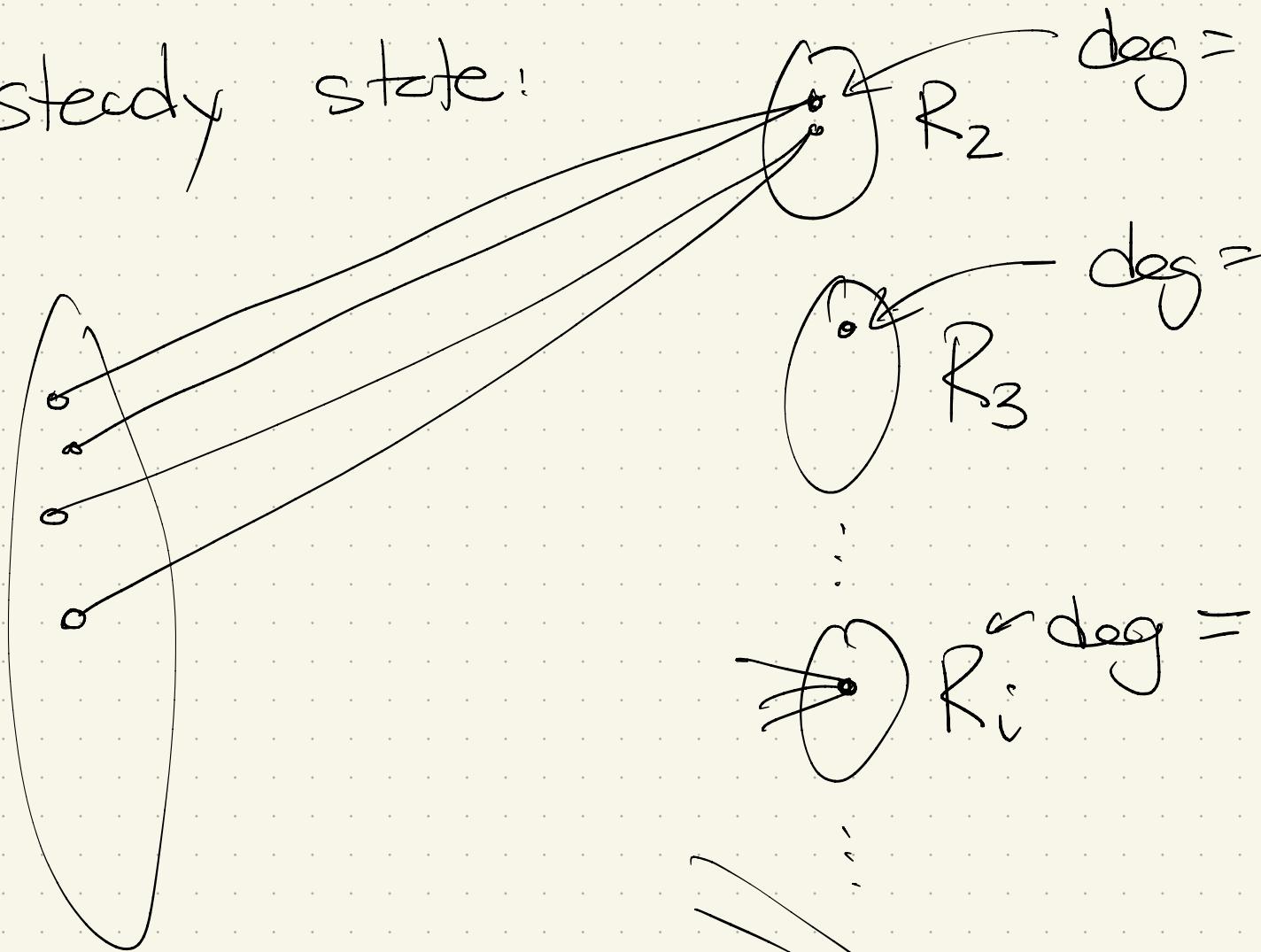
Construction: bipartite graph $G = (V, E)$
where $V = L \cup R$



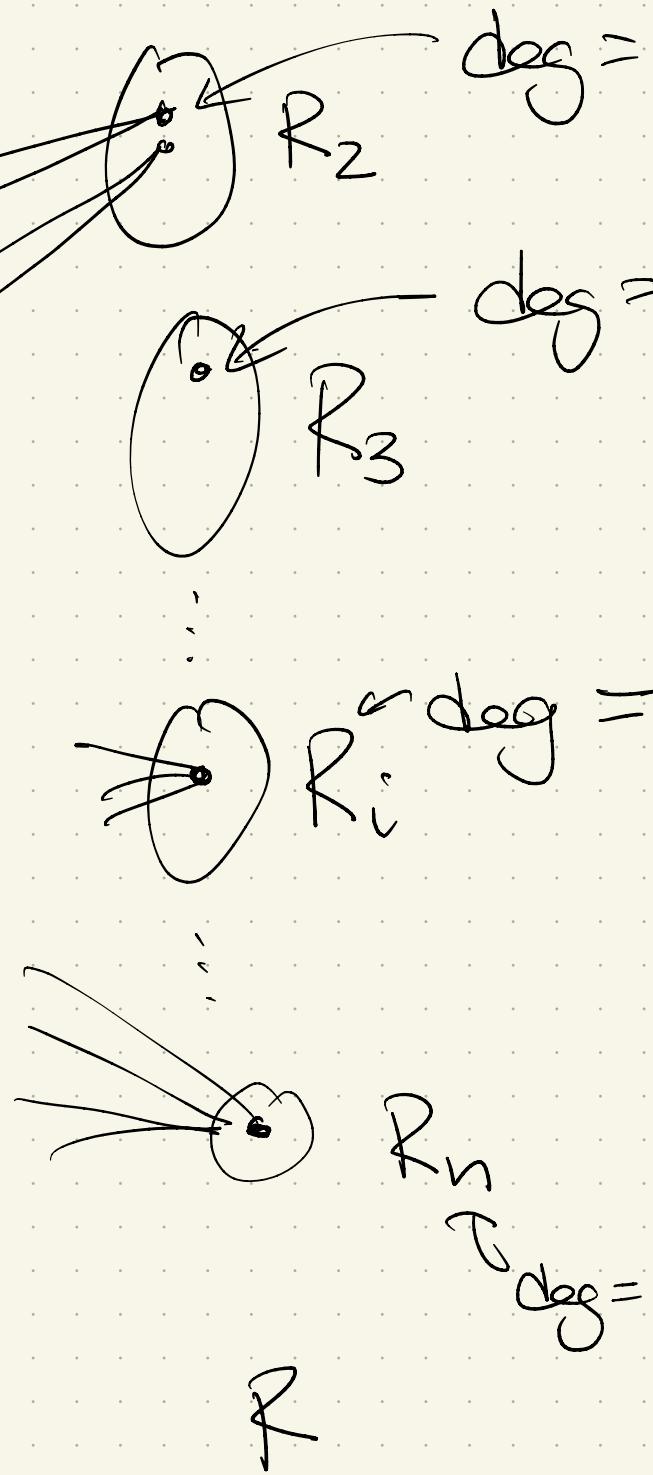
For R : for each $i \in 2..n$, add $L_i^{\frac{n}{i}}$ vertices, each degree i & connect to different vertices in L .

→ call these $R_i \subseteq R$

In steady state:



l of
size n
max degree \leq



What does our algorithm do?

GREEDYVERTEXCOVER(G):

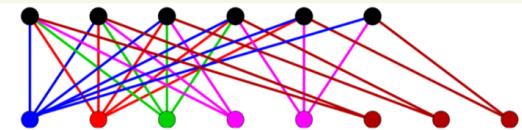
```
 $C \leftarrow \emptyset$ 
while  $G$  has at least one edge
   $v \leftarrow$  vertex in  $G$  with maximum degree
   $G \leftarrow G \setminus v$ 
   $C \leftarrow C \cup v$ 
return  $C$ 
```

Highest degree vertex?

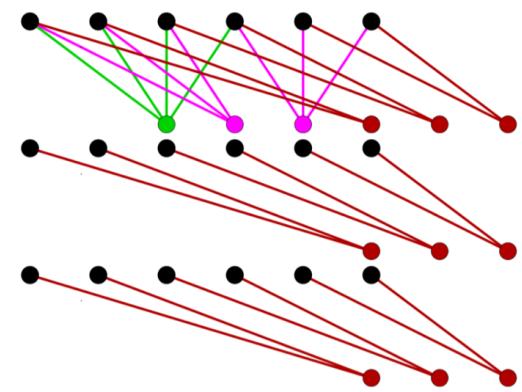
↳ in R , one of
degree n .

When removed:

Remove the blue vertex... And add it to the VC



Remove red vertex



So, in end, all R vertices chosen.

What is $|R|$?

$$|R| = \sum_{i=2}^n |R_i| = \sum_{i=2}^n \left\lfloor \frac{n}{i} \right\rfloor$$

∴

Recall that "cheat sheet":

Harmonic numbers:

$$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{71}{25}, \dots$$

+

Harmonic series:

$$H_n = \sum_{i=1}^n \frac{1}{i},$$

$$\ln n < H_n < \ln n + 1,$$

$$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$$

So, back to $\alpha(n)$ stuff.

$$|R| \geq n(H_n - 2)$$

$$|L| = n$$

So, greedy factor $\alpha(n) \geq \frac{|R|}{|L|}$

+ $\frac{|R|}{|L|} \geq$

Note: lower bound! Can we show it always gets at least this?

Theorem Greedy algorithm always chooses a set of size $\leq (\log n) \cdot \text{OPT}$

To prove: Rewrite slightly:

GREEDYVERTEXCOVER(G):

$C \leftarrow \emptyset$

$G_0 \leftarrow G$

$i \leftarrow 0$

while G_i has at least one edge

$i \leftarrow i + 1$

$v_i \leftarrow$ vertex in G_{i-1} with maximum degree

$d_i \leftarrow \deg_{G_{i-1}}(v_i)$

$G_i \leftarrow G_{i-1} \setminus v_i$

$C \leftarrow C \cup v_i$

return C

Let G_i = graph in i^{th} iteration.

Let $d_i = \max \text{degree in } G_i$

Let C^* = optimal vertex cover in G
(which must exist but which we
don't know)

We do know that C^* is a
vertex cover for each G_i .

So:

$$\sum_{v \in C^*} \text{degree of } v \text{ in } G_i \geq \# \text{ edges in } G_i$$

Why?

Since $\sum_{v \in C^*} \deg_{G_i}(v) \geq |E(G_i)|$

\Rightarrow average degree in G_i of C^* is $\geq \frac{|E(G_i)|}{|C^*|}$

Why?

But: this means max degree in G_i

is at least this size.

$$\Rightarrow d_i \geq \frac{|E(G_i)|}{|C^*|} = \frac{|E(G_i)|}{OPT}$$

Also: # of edges in G_i decreases

$$d_i^* \geq \frac{|E(G_i)|}{\text{OPT}} \geq \frac{|E(G_j^*)|}{\text{OPT}}$$

for $j \geq i^*$

Now, consider first OPT iterations
of loop:

$$G_1 \rightarrow G_1 \rightarrow G_2 \rightarrow \dots \rightarrow G_{\text{OPT}}$$

How many edges get removed?

$$\sum_{i=1}^{\text{OPT}} d_i \geq$$

$$\text{So: } \sum_{i=1}^{\text{OPT}} d_i \geq |E(G_{\text{OPT}})|$$

$$\text{But: } |E(G_{\text{OPT}})| = |E(G)| - \sum_{i=1}^{\text{OPT}} d_i$$

Why?

$$\text{Crazy sums: } \sum_{i=1}^{\text{OPT}} d_i \geq |E(G)| - \sum_{i=1}^{\text{OPT}} d_i$$

In other words:

OPT iterations removes at least
half the edges.

$$|E| \rightarrow \frac{|E|}{2} \rightarrow$$

Keep going: OPT iterations more
How many times?

After $\log(|E|)$ rounds, done.

How many per round?

Runtime & space!

A different approximation - simpler idea:

- pick any edge + add its endpoints to the cover
- delete all "covered" edges
- Repeat

Seems worse,
right?

DUMBVERTEXCOVER(G):

$C \leftarrow \emptyset$

while G has at least one edge

$(u, v) \leftarrow$ any edge in G

$G \leftarrow G \setminus \{u, v\}$

$C \leftarrow C \cup \{u, v\}$

return C

Theorem

Dumb vertex cover is a 2-approximation.

Proof

Let C be greedy cover here,
& C^* be OPT.

For each edge $e = \{uv\}$:

Hub?

