_____/

•		•	•	•	•		•			•	•	•		•	•	•	•	•	• •				•	• •	•		•	• •	•	•		•	•		•	• •	•	•		
٠		٠	•	•	٠		٠					•		٠		•	٠	•	• •		٠	•	•					• •		•				٠		• •	•	•	• •	
•		٠	•	•	٠		٠							٠		٠	٠	•	• •		٠	•	٠					• •			• •			٠		• •		•	• •	
											•							•														•								
																											•					•								
																																•						•		
٠		•		•	٠		٠				•					٠	٠	•			•		٠	• •					•			•		•		• •				
٠					•			٠	٠					0	•								•	• •			•		•			•								
																		•									•													
٠				•	٠		٠					•		٠		٠	٠						٠	• •					•			•		•		• •				
٠								٠						0	•			•						• •			•	• •	•			•								
٠					•		•		•			•		0	•	•	•		• •				٠	• •			•		•			•								
					•									•																		•								
														٠		•							•																	
٠		•	٠	٠	٠		۰				•	•			•	٠	٠	•	• •	•	٠	٠	٠	• •				• •	•			•		٠		• •				
			•		•		٠	•						٠	•		٠	•					•	• •			•					•						•		
				•	•										•			•					•				•	• •				•			•			•		
		•			•		•				•	•		•			•	•	• •	•			•						٠			• •			•	• •	•	•		
٠		•	•	•	٠		٠					•		٠		٠	٠	•	• •		٠	•	•	• •						•	• •			•	•	• •	•	•	• •	
٠		٠	•	•	٠		٠		•		•	•	• •	٠		٠	٠	•	• •	•	٠	•	•	• •				• •	•	•	• •			٠	•	• •	•	•	• •	
٠		٠	•	٠	٠		٠		•		•	•	• •	٠	•	•	٠	•	• •	•	٠	٠	•	• •	•	•		•••	•	•	• •	• •		٠	•	• •	•	•	• •	
•	•	•	•	•	•		٠	٠		•	•	•		۰	٠			•	• •	•			•	• •	•		•	• •	٠			•	•	•	•	• •	•	•		
•		•	•	•	•		•	•	•		•	•		•	•	•	•	•	• •	•			•	• •			•	• •	•			•	•		•		•	•		
•		•		•	•		•			•		•		٠			•				•		•	• •			•			•		• •		•	•		•	•		
٠	•	٠	٠	٠	٠		٠		•		•	•	• •	٠	•	٠	٠	•	• •	•	٠	٠	٠	• •	•			• •	•	٠	• •			٠	•	• •	•	•	• •	
•	•	٠	•	٠	٠	• •	٠		•	•	•	•	• •	٠	•	•	٠	•	• •	•	٠	٠	٠	• •		•		•••	•	•	• •	•		٠	•	• •	•	•	• •	
•	•	•	•	•	•		٠	•	*	•	•	*		۰	•	•	٠	•	• •	•	•	•	•	• •	•	•	•	• •	•	*		•	•	•	•	• •	•	•	• •	
•	•	•	•	•	•	• •	0	٠	٠	•	•	•	• •	0	٠	٠		•	• •	•	٠	•	٠	• •	•	•	•	• •	٠			•	•	•	•	• •	•	•	• •	
•	•	•	•	•	•		٠	•	•	•	•	•		٠	•	•	٠	•	• •	•	•		•	• •		•	•	• •	•			•	•	•	•	• •		•	• •	
٠	•	•	•	•	•		•	•		•	•	•		•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•			•	•	•	•		•	•		
•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	• •	•			•	• •	•		•	• •	•			•	•	•	•		•	•		
٠		•	•	•	•		•		•	•	•	•		٠		•	•	•	• •	•	•		•	• •		•	•	• •	•	•		•	•	•	•	• •	•	•		
٠	•	•	•	•	•		•	•	•	•		•		•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•			•	•	•	•	• •	•	•		
٠	•	•	•	•	•			•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	• •		•	•	• •	•	•	• •	•	•	•	•	• •		•	•	
٠	•	•	•	•	•				•	•	•	•		•		•	•	•	• •		•	•	•	• •	•	•	•	• •	•	•	• •	• •		•	•	• •	•	•	• •	
٠	•	•	•	•	•	• •	•	•	•	•	•	•		•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	• •	• •	•	•	•	• •			•	

TO BRA Subset Sum is NP-Hard. Reduction: Vertex Cover Input: Graph G & size k Goal: find k vertices, such that even edge in G is incident to at least one vertex in set Challenge: Construct a set of numbers, s.t. we can hit a target value G) G has that of size k vertex over

Recall: base 4 $(32012)_{4} = 34+2.4+0.4+1.4+2.40$ 1032+2312 >10010 TTT IS Idea: Use base 4: force a target T that requires you to use only vertices, but to "cover" edges Number edges O. E-1 a create a number for subset sum WE digits Co: 20 -00. -010C, : b1700 QE-1: PE-1=010-0, E Spots 55)

For each vertex, make another # Q_{1} , \tilde{c} = 1 els Think of base 4 representation \widehat{V} $a_u := 11000_4 = 1344$ $b_{\mu\nu} := 010000_4 \ge 256$ $a_{v} := 110110_{4} = 1300$ $b_{uw} := 001000_4 = 64$ $a_w := 101101_4 = 1105$ $b_{vw} := 000100_4 =$ 16 $a_x := 100011_4 = 1029$ $b_{vx} := 000010_4 =$ $b_{wx} := 000001_4 =$

Now, set T= k.4^E+ 204ⁱ inpat L=0 2 each Ares Kvortees Proof: Size & VCZ=> Sum to T DVC: JE vertices V1, V2, -, VK s.t. teeE, e is incident to some $V_{\tilde{c}} \in \{ \langle V_{1}, \dots, V_{k} \}$

 \Longrightarrow (cont) Pick a subset:

E: Suppose some subset of Sums to T. options? Reall: T= k.4 = 5-1 0 204 Flus: Each digit position has only 3 1's across all #5;

		 	 • • •
· · · · · · · · · · ·		 	 • • •
		 	 • • •
		 	 • • •
	• • • • • • •	 	 • • •
		 	 • • •
		 	 • • •
	• • • • • • •	 	 • • •
		 	 • • •
		 	 • • •
		 	 • • •

farthoo: Given $X = \{X_{1}, \dots, X_{n}\}, Can$ we pertition X into A+B $(SO A UB = X, A \cap B = \Phi, + A, B \neq \Phi)$ Z-Xi Z Xj X, EB XiEA Reduction

Proof;	· · · ·
	• • •
	• • •
	• • •
	• • •

examples

arXiv.org > cs > arXiv:1203.1895 Search or Article ID inside arXiv All papers Computer Science > Computational Complexity Computer Science > Computational Complexity Dow Classic Nintendo Games are (Computationally) Hard - PD Greg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta Ucree (Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) Curre We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- - Oth 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Chan Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games. Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) NA Cite as: arXiv:1203.1895 [cs.CC] For this version) Bublicsion history Bisli From: Alan Guo (view email) Gre [v1] Thu, 8 Haz 2012 19:37:20 GMT (627kb,D) Ja [v2] Thu, 6 Feb 2014 18:24:15 GMT (3330kb,D) Ala Booki Ala Booki Ima Wh											
Itela I Advanced search) Computer Science > Computational Complexity Dov Classic Nintendo Games are (Computationally) Hard • PD Greg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta • Ott. (Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) Curre We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Chan Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games. Chan Subjects: Computational Complexity (cs.CC); computer Science and Game Theory (cs.GT) Befer Subjects: Computational Complexity (cs.CC); computer Science and Game Theory (cs.GT) Bulf With authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Bookn	arXiv.org >	> cs > arXiv:1203.1895	Search or Article ID inside arXiv	All papers 🗸 📿	Broaden your s	earch usir					
Computer Science > Computational Complexity Dor Classic Nintendo Games are (Computationally) Hard Creg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta (Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) We prove NP-hardness results for five of Nintendo's largest vide game franchises: Mario, Donkey Kong, Legend O'Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games. Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American BMB2 and Zelda 2 Refer Subjects: cmylutational Segures (cs.CC) Computer Science and Game Theory (cs.GT) DBLF Cite as: arXiv:1203.1895 [cs.CC] for this version) Bblc DBLF Subjects: Computational (627kh,D) Erric Grig Yun, 6 Feb 2014 18:24:15 GMT (3330kb,D) Grig Aia Witch authors of this paper are endorsers? 1 Disable MathJax (What is MathJax?) Booki Site Witch authors of this paper are endorsers? 1 Disable MathJax (What is MathJax?)<			(<u>Help</u> I <u>Advanced search</u>)								
Classic Nintendo Games are (Computationally) Hard • PD Greg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta • Ott, (Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) Curre We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games. Chan Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American BMB2 and Zelda 2 Refer Subjects: Computational Complexity (cs.CC): Computer Science and Game Theory (cs.GT) NA Cite as: arXiv:1203.1895/v3 [cs.CC] BbLF Iisti Iisti [V1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erif [V2] Thu, 6 Feb 2014 18:24:15 GMT (3330kb,D) Erif [V3] Sun, 8 Feb 2015 19:45:26 GMT (425kb,D) Booki Which authors of this paper are endorsers 71 Disable MathJax (What is MathJax?) Booki	Compute	Computer Science > Computational Complexity Dov									
(Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) Curre (Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3)) Curre We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games. Chan Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American SMB2 and Zelda 2 Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) 6 bloc Cite as: arXiv:1203.1895 (cs.CC] 6 bloc (v1) Thu, & Mar 2012 19:37:20 GMT (627kb,D) Erid [v2] Thu, 6 Feb 2015 19:45:26 GMT (3330kb,D) Erid [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Booki	Classic Nintendo Games are (Computationally) Hard PD Greg Algunis Erik D. Demaine, Alan Guo, Giovanni Violietta										
We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Color Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- new I r 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Chan Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Chan Donkey Kong Country games and several Legend of Zelda games. cs Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American SMB2 and Zelda 2 Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) • NA Cite as: arXiv:1203.1895 [cs.CC] 6 bloc (or arXiv:1203.1895 [cs.CC] Gre Iisti [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erid Ala [v2] Thu, 6 Feb 2015 19:45:26 GMT (330kb,D) Booki Erid [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Erid Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Booki Ei X	(Submitted	(Submitted on 8 Mar 2012 (v1), last revised 8 Feb 2015 (this version, v3))									
String Lost Events, and Super Mainto Work, Donkey Kong Ocountry 1-5, an Eegend of Zeida games, and Chan Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the Chan Donkey Kong Country games and several Legend of Zeida games. cs. Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American SMB2 and Zeida 2 Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) • NA Cite as: arXiv:1203.1895 [cs.CC] • NA (or arXiv:1203.1895 [cs.CC] 6 bloc DBLF Isti Gre Isti From: Alan Guo [view email] Gre Erif [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Ala Erif [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Ala Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Booki Isti	We prov Legend	We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokemon. Our results apply to generalized versions of Super Mario Bros. 1- 3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokemon role-playing games. In addition, we prove PSPACE-completeness of the									
Donkey Kong Country games and several Legend of Zeida games. cs Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American SMB2 and Zeida 2 Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) • NA Cite as: arXiv:1203.1895 [cs.CC] • bloc (or arXiv:1203.1895/33 [cs.CC] • DBLF Itisti Gree Itisti From: Alan Guo [view email] Gree Eriv [V1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Eriv Ala [V3] Sun, 8 Feb 2015 19:45:26 GMT (3330kb,D) Booki Eriv Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Booki Itisti	Metroid										
Comments: 36 pages, 36 figures. Fixed some typos. Added NP-hardness results (with proofs and figures) for American SMB2 and Zelda 2 Refer Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) • NA Cite as: arXiv:1203.1895 [cs.CC] • 6 bloc (or arXiv:1203.1895v3 [cs.CC] for this version) • 0BLF Submission history Iisti From: Alan Guo [view email] Gre [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erii [v2] Thu, 6 Feb 2014 18:24:15 GMT (3330kb,D) Booki [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Iisti	Donkey	CS CS.(
Subjects: Computational Complexity (cs.CC); Computer Science and Game Theory (cs.GT) • NA Cite as: arXiv:1203.1895 [cs.CC] 6 bloc (or arXiv:1203.1895/v3 [cs.CC] for this version) 0 BLF Submission history listi From: Alan Guo [view email] Gre [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erik [v2] Thu, 6 Feb 2015 19:45:26 GMT (3330kb,D) Booki [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Evit	Comments	: 36 pages, 36 figures. Fixed some t SMB2 and Zelda 2	typos. Added NP-hardness results (wi	th proofs and figures) fo	or American	Refer					
Cite as: arXiv:1203.1895 [cs.CC] 6 bloc (or arXiv:1203.1895 [cs.CC] for this version) DBLF Submission history listi From: Alan Guo [view email] Grc [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erit [v2] Thu, 6 Feb 2015 19:45:26 GMT (330kb,D) Ala [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Image: Construction of this paper are endorsers? I Disable MathJax (What is MathJax?)	Subjects:	Computational Complexity (cs.C	C); Computer Science and Game The	Computer Science and Game Theory (cs.GT)							
Submission history DBLF From: Alan Guo [view email] listi [v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Gre [v2] Thu, 6 Feb 2015 19:35:26 GMT (3330kb,D) Erif [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Image: Comparison of this paper are endorsers?	Cite as:	(or arXiv:1203.1895 [cs.CC]	r this version)	6 bloç	•	• •					
From: Alan Guo [view email] Interview of the second seco	Submission history										
[v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) Erii [v2] Thu, 6 Feb 2014 18:24:15 GMT (3330kb,D) Ala [v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) Image: Content of this paper are endorsers?	From: Alan Guo [view email] Gre										
[v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	[v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D) E [v2] Thu, 6 Feb 2014 18:24:15 GMT (3330kb,D) A										
Which authors of this paper are endorsers? I Disable MathJax (What is MathJax?)	[v3] Sun, 8	[v3] Sun, 8 Feb 2015 19:45:26 GMT (3425kb,D) Booki									
	Which auth	ors of this paper are endorsers? I Di	sable MathJax (What is MathJax?)				•	• •			

R RANCE

i igure ioi variable gauget for buper mario b

shes until it is collected by Mario.

11 of 36

Figure 11: Clause gadget for Super Mario Bros.

Link back to: arXiv, form interface, contact.

Left: Start gadget for Super Mario Bros. Right: The item block contains a

Figure 9: Finish gadget for Super Mario Bros.

arXiv.org **>** cs **> arXi<u>v:1711.00788</u>**

Help | Adv

Computer Science > Computational Geometry

On the complexity of optimal homotopies

Erin Wolf Chambers, Arnaud de Mesmay, Tim Ophelders

(Submitted on 2 Nov 2017)

In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely, given two homotopic curves γ_1 and γ_2 on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between γ_1 and γ_2 where the length of the longest intermediate curve is minimized. Such optimal homotopies are relevant for a wide range of purposes, from very theoretical questions in quantitative homotopy theory to more practical applications such as similarity measures on meshes and graph searching problems.

9

We prove that Homotopy Height is in the complexity class NP, and the corresponding exponential algorithm is the best one known for this problem. This result builds on a structural theorem on monotonicity of optimal homotopies, which is proved in a companion paper. Then we show that this problem encompasses the Homotopic Fréchet distance problem which we therefore also establish to be in NP, answering a question which has previously been considered in several different settings. We also provide an O(log n)-approximation algorithm for Homotopy Height on surfaces by adapting an earlier algorithm of Har-Peled, Nayyeri, Salvatipour and Sidiropoulos in the planar setting.

S Droble any prento) runing

Liveer program In a linear program, we are given a Set of variables The goal is to give these real values So that: Due satisfy some set of linear equations or inequalities 2 We maximize or minimize some linear objective function

Example LP: Cargo plane: - can carry 100 tons, + volume of 60 cubic meters - 3 metericls: · 1st: 2 tons/cubic neter, 40 cubic meters available, worth \$ 1000 per com ozna: 1 ton/c.m, 30 cm total available, and worth \$1200 per 3rd. 3 tons/cm, 20 cms total, d \$12,000 per C.M

Profit.maximize Such that! $X_1 \leftarrow$ XZ X35

etry: Each equation makes a plane (since linear! Georetr 121 -) ·~

Each vorable adds a dinension: Maximize X,+6x2+BX3 $X_{1} \leq 200$ $X_{2} \leq 300$ $X_{1} + X_{2} + X_{3} \leq 400$ $\chi_{2} + 3\chi_{3} \leq 600$ $\chi_1 \ge O \otimes$ $\chi_2 \ge 0$ X2 20 And each egn adds a face to poly hedron

Another (more general) n foods, m numents Let $a_i = amount of nutrient i in food j$ $<math>r_i = requirement of nutrient i$ $<math>\chi_i = amount of food j purchased$ C; = cost of food j Goal: Buy food so you satisfy nutrients while minimizing cost matrix Can view as

 $7 \quad \overline{r} = (r_1, r_2, - r_m)$**...** H = . . . $\overline{\chi} = (\chi_1, \ldots, \chi_n)$ $C = (C_1, \dots, C_N)$ So: MINIMIZE 2.1.

In general, get systems like this: maximize $\sum c_j x_j$ subject to $\sum a_{ij}x_j \le b_i$ for each $i = 1 \dots p$ $\sum a_{ij} x_j = b_i \quad \text{for each } i = p + 1 \dots p + q$ $\sum a_{ij} x_j \ge b_i \quad \text{for each } i = p + q + 1 \dots n$

Geometric picture:

A two-dimensional polyhedron (white) defined by 10 linear inequalities.

Canonical formi Avoid having both = and Why Soget something more like our first example: maximize $\sum_{i=1}^{a} c_j x_j$ subject to $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ for each i = 1 ... n $x_j \ge 0$ for each $j = 1 \dots d$ Or, given a vertor è, matrix A + vector b:

Anything can be put into Canonical Forme The reduction: (DAvoid = -(2) Avoid \geq

How could these not have a solution? Maximize XI+X2 2 ways

Ichires ~ (* S~

maximize x - ysubject to $2x + y \le 1$ $x + y \ge 2$ $x, y \ge 0$

Note: O Multiplying by -1 turns any maximization problem into a minimization one: (1)2) Can turn inequalities into equalities via slack variables: $Saixi \leq b \Rightarrow$

3) Can change equalities into inequalities, also $Za_i X_i = b$ 1 = 1

Re algorithm: Simplex Assumes Canonical form maximize $\sum_{j=1}^{d} c_j x_j$ subject to $\sum_{i=1}^{u} a_{ij} x_j \le b_i$ for each i = 1..n $x_j \ge 0$ for each $j = 1 \dots d$ only for all variables

How to	implement, plus	runture;

Connections to other problems: It turns out that LPs are powerful chough to express many types of problems." In a sense, we solve many problems by reducing them to an LP:

Ex: Flows + Cuts Input: directed 6 w/edge capacities (le) $4S, t \in V$ Goal: Compute flow f:E=>IR S.t. 1) 04 fe) 4 de) $2 \forall \forall v \neq s, t,$ $\int f(h \rightarrow v) = \int f(v \rightarrow w)$ Make an LP: Maximize 5. t.

Related: Min cuts (S,T) Use indicator variables: $S_v = 0$ or 1 Xe=X(u=v)=1 if ues and veT 1

> want LP: The l Minimize Z. Cu-zu·Xu->v $X_{u \to v} + S_v - S_u \ge O$ $S_s = 1$ St 0 -

Note! For flow/cuts, a solution would yield optimal LP solution. The perese is not obvious! LP might have strange fractional answer which doesn't describe a cut. If can be shown that this won't happen (> but not obvious...