
Algorithms -Spring's

MSTs
SSSPs

Recap :
· How's this view?

· Office hours :

Thursday
1-23pm

Minimum Spanning Trees um
directed
-

Goal : Given a
T
weighted "Graph G,

-

W :E->A the weight function,

find a tree T of G
that Spann,: S

wH) = [w(e)
eeT VIS

·
Klemma :I

Given any
SEV

,
the minimum edge xy

from any XES
to some yeV/S is

In the MST ,

↳ "safe" edge

So : De greedy !
Bornvka : Build a forest ,Initially V disjoint

verhos .

-
While (F is not a free

OCE)-> Findlsafe edges and
data

sonents In FO(v)-> count corn com
min

one is

Runtime : safe

how many
tires

loop repects :

logaV ·
Worst case.Ou

Prim : Keep one spanning
subtree.

Initially, T= [iv]
While ITIV :

add next safe edge
#

Runtime :

E-V

Kruskal's Algorithm:

O
O O

G

8

How to implement ? Sort edges +
loop over them. Hor to see if

useless?

Date Structure : Unionfind-

forerelement

-
-
-

T

Then :

Comparison :

· Boruvka : 0(ElogV)
&

· Prim :O(E +Vlogv)
<

S· Kruskal : OE logV)
Remember : CElogE

- ElogV=ZElgh

·Worst case here
, plus hidden

constants.

· Also : E= O(v2) but could be

much smaller!
-

Next : Shortest paths
-

God :

given
S
,
teV , compute the

shortest path from
s to t.

Motivation : roads
vorting
cost

To solve this, we need to
solve a

more general problem
:

And shortest paths from s to every vertex-

-> t
Why ? - -on ?

Singlesource Shortest paths (SSSP)

Some notes :
e, Elz

Why a tree?
- b=lz

↳

What about negative cyclesoa
--=2 If reg cycles,

= I
"Shortest" path

↑ could have
infrnte length.

Also : If undirected
,
can simulate

with a directed graph :
W

nor = nosor
W

Unless you
have negative edges.

(It gets wierd .)

not a
tree!

Important to realize :

MST # SSSP

Why? MST is globally min
↳ butthat doesn't

mean

every
just path in

it is min
.

Computinga SSSP.

(Ford 1956 + Pantzig1957)
Each vertex will storevalues.

(think of these as tentative
shortest paths.) (dist, pred)

-dist(v) is length of tentative shortest
path Surv
(or o if don't have an option yet

- pred(v) is the predecessor of v on that
tentative path Suv (or NULL if none)

(D ,P (D ,9)
Initially :

10
,
0S se ,o->(u ,b)

We say an edgear is tense if
dist(n) +w(n-v)&

S SeX
->

EX :

**Initially :

>- O + 10 < AX

↳-
L

Here :
(d(u) ,Pi
-

In genera
I : ~bluer)①

DenumT

keyIdea for algorithm :

Find tense edges a relax
them : ·
-I
-

Then :

X

-
-

(0,a)
-

-

- i
sor

Claim : At any point
in time , dist(v)

-

is either is
or the length of

Suv walk.
some

Proof : Induction on while loop Hectors.

Base case :

First round of loop :

dist(s) = 0
To finite

all other
-S
⑳
->o distance votes are

20.

O-↳"
Grss
nbrs

Ind hyp :

In iferation lit, the
claim is

true

Ind Step :
In iferation k :

take out some vertex
U.

⑨ U
D

new is fense:P ->- If

-↳#- relaxi
- 8- G(dist(v) ,p) wev)

his hors

have finite
dist

by IH
: n stores some seen

walk

so v stores that walk + one
more

edse .

Warm-up : Unweighted graphs-

-> use a quent
How does "fense" work?

Clint : think BFS !)
I

·

What the heck is his token ??
quene

:

S

U =

Lemma
-
At the end

of the ith Phase (when E

comes off thequee, for every
Vertex V,

either
· d(v) = 1

(not found yet)
or od(v)i

land vis only in queue
Eid(v) = i) .

↑roof : induction on phase
Base case :

Lemma holds
InduchveHyp :

for phases -1

IS : phoseweknowbyad.-

BFS tree -

Q: ve- dist= i-1
/ nu
-

Di-1

What now?

2nd version : DAGs
Thatif directed + acyclic ?

Remember : helps to have all

"Closer" vertices done before

computing your distance.
Well

,
know something

about DAG-orders :

↳ topological order !

00
006

o

edges

So
,
use it'

