Algorithms-Spring 25

Flow applications

-HW due tridey Monday -Office hours: today: 1-3pm tomorrow: might more on zoons Lowill post on slock by 1pm with details - Recdues: Start Friday -Poll: last topic -2 LP

Topics in Ch. 11 A mess of different ideas! (1) Matchings: Identify a way to pair up tems Lastre Build G': More pairs (3) larger flow Disjoint paths:
Modify G: — turn into flow network
find paths that avoid each ofter. 3) "Tuplo" Selection
Build a graph: flow paths give selection Magic! All use flows to solve.

Step back: reductions again! In these examples algorithm is usually: Build 6 from Run max flow Gencode problem solution Correctuess: Solution to (=) flow of value k

Experte Graphs Any graph where vortces can be divided into 2 sets (usually Lar) St. no edges exist inside Lork Maximum matching : And eages (no 2 edges per vodex)

Instead, use Hows: Suppose V=LUR here: f=V $V = V H \{s\} v \{t\}$ Birld G: E= {eeE, e= {u,v}, ueL, ver U->V? U Stuel, s-sul U& Aver, vot? or capacities: set all capacities = 1

Algorithm: Given (= (V, E) with V= LUR (bipartite) // build G VX LURUES, t3 E: Add edges: YuEL, s > n and HVER, v > t Ye= Su, v) EE, uEL + VER, add u> v to E 1/run flow TF(G) Maet matching return vel (f) f f(e) = 1 for e going from L3R, and e to motelline

Runhne: Onlin: O(VE) FF: O(V+E) of) Input: 6=(4,0) Here: V= V+2 B=V+E and fe

Overall: Orly VE = (V+2)(V+E) FT: (V+E) F = (V+2+V+E).V O(V(V+E)) = O(VE)

DAny matching in 6 vald: edgerstrants are

Stow in 6 2 Any flow in 6 => matching in 6 Given flow f, build a matching M.

All edges go SIL, LIR, RIST

Consider SIL edges: one per vertex in L.

Then flow poth goes Lise, PIt

Max flow Town to max matching

Why metaling? Consider LAR edges with flow I Claime at most one per VEL and work of Ray 1 De 1 Why? Only one case to V use for decomp = get mothing.

Figure 11.3. An increasing sequence of matchings connected by alternating paths.

Augmenting potons

Crazier "word problem" examples A company sells & products, + toeps records on customers. Goal: Design a survey to send to customers, to O get feed back. Each customer's survey shouldn't be too long, at should ask only about products they purchased o Each product needs some # of reviews from different cushmers

Input: - L products A[i,j] n castomers - records of who bought what:

ais for i=k, j=n

Co Is max # of products to ask them about - For each product, Pi 15 minimum # of reviews needed PGJ How to obsign?

Algorithm: Input: C[1..n] with cists (mex) P[1-K] = #of reviews-A[IN][IN] purchased Build Go (picture first) (product i Customers in products

1. N

C1

C2

V2

V2

S6

P1 Vi Wapady=100

More Cornelly: Boild G! Le one vortex per product: {u,,-,u,} VE LURU Est? set capacities: S-> Vi gets cap. Ci u, > t gets cap fi and Vi > u, Sets cap = 1, titi Run Max How // Can we find assignment? - f= \$ Pi 'Yes, IF edge vi > review producty

Correctness Suppose con find ovstoner assignments. Send I flow path 5-3 custoner
product -3 t Build flow: Total: Zpj Suppose Ghas a flow of value Epi, Use flow partis: know each product only get reviewed

Kunture: Dolin- Vitalistoners V = 2 + k + n = 0(k+n)RENTHE = O(nk) L-7R edges

= (n+k)(nk)

Another: Exam scheduling Tuput: n classes, r classrooms to the Slots, p proctors E[1.n]: H of students in each S[1...]: capacity of each ATILE, I.P. ATK, WI IS true if the proctor is free at time slot K a each proctor gets 45 classes.

Flow graph: 20k (Rice) 500 Edges: HVEC, S->V with cop=1, So flow paths "assign" I class to valid room, time a proctor

Then C > R edges: IF ETi] & STi]: class will fit In room. So add edge 1-9 [Ar it C+jtR] capacity = X1 Then 2-31 edges: add all edges jok with Capacity = 1 Since each room 15 open to start at every thre

Next: T-> P edges If ASK, e] is true, then proctor I is open at time k, (so can't be assigned 2) Finally: P-> t Add all Lot edges, for le P Capacity = \$ 5

rooms complete classes

Figure 11.5. A flow network for the exam scheduling problem.

Must go soisjok->l->t

So: if I flow of value n, can find assignment of exams. Other way: If can assign rooms, classes, times, a proctors, con olso use each assignment to build a flow peth of value 1 in G. So, assignent => flow.

Runtine:

E=

400/10 = 0(VE) =