Algorithms-F2/12023

Applications of Mon

_____/

Kecop · Sign up for oval grading +HW & groups · Sample findt. I'll bring next week • Final readings added to Canves · Perieu Session: Wed. of finals week ct either Zor 3pm

Max flow/Min Cert: • FF: Residud grephs: O(V+E). ft) • Edmonds - Karps O(E2 log E log ft) • BFS based: O(VE2) C((V+E). f*)

Technique	Direct	With dynamic trees	Source(s)						
Blocking flow	$O(V^2E)$	$O(VE\log V)$	[Dinitz; Karzanov; Even and Itai; Sleator and Tarjan]						
Network simplex	$O(V^2E)$	$O(VE \log V)$	[Dantzig; Goldfarb and Hao; Goldberg, Grigoriadis, and Tarjan]						
Push-relabel (generic)	$O(V^2E)$	-	[Goldberg and Tarjan]						
Push-relabel (FIFO)	$O(V^3)$	$O(VE\log(V^2/E))$	[Goldberg and Tarjan]						
Push-relabel (highest label)	$O(V^2\sqrt{E})$	_	[Cheriyan and Maheshwari; Tunçel]						
Push-relabel-add games	-	$O(VE \log_{E/(V \log V)} V)$	[Cheriyan and Hagerup; King, Rao, and Tarjan]						
Pseudoflow	$O(V^2E)$	$O(VE \log V)$	[Hochbaum]						
Pseudoflow (highest label)	$O(V^3)$	$O(VE\log(V^2/E))$	[Hochbaum and Orlin]						
Incremental BFS	$O(V^2E)$	$O(VE\log(V^2/E))$	[Goldberg, Held, Kaplan, Tarjan, and Werneck]						
Compact networks	_	O(VE)	[Orlin]						

Figure 10.10. Several purely combinatorial maximum-flow algorithms and their running times.

Many use very different techniques - linear programmi - Complex data structures - not residual graphs

Topics in Ch.11 A mess of different ideas! D Matchings: Identity a way to pair up items Build G: More PRITS larger flow 2 Disjoint paths: Modify G: Find paths that avoid cach other. 3 "Tuple" Selection Build a graph: flow paths give selection Magic

First problem What if we want non-intersecting peths from 5 to t? lwo varianB; - Edge disjoint: No 2 paths Visit the verter Note: J. Arent! And both model Useful cases Rey: Flow will of into pato! decompose

Input: Unweighted graph G=(V,E) plus s, E EV. For pm Edge dispirit. For each edge $e = \overline{uv}$: Set $ccpacy(e) \in 1 \int O(E)$ Afe Call flow algorithm Jo(v.E) tou to set paths? Insticlize empty list for paths While (value (F) > 0) Find S>V edge w/f(S>V)-1 Gdd (S>V) to paths [i] Set f(S=V)=0 While (V = t) ~ kst of Find edge V->U edges With f(N>U)=1 Gdd (U)=1 add (v->u) to paths [i] set f(v>u) = 0 V Z u Č++

Since all flows are integral, + capacity of every edge 15 = 1 15 = 1> no edge will be in 2 tots. 1 total paphs: 1: 3-24, V, ->V2, V2->t correctness: Any set of k disjoint paths > flow of value k any flow of value k > Set of k

Vertex disjoint: Ce find don't shere a vertex Build a new graph G: unvegted Storflow Figure 11.1. Reducing vertex-disjoint paths in \tilde{G} . View thes V(G) = 2 vertices for every VEG W(G) = 2 vertices for every VEG W = E, add V = E, add V = E, add V = V = V = E, add V = E, add V = E, add V = V = E, adAny flow path that enters Vin (will exit Vout, 30) $f(v_{in} \rightarrow v_{out}) = 1 = C(v_{in} \rightarrow v_{out})$ 'Kesult:

Another (his) variant Suppose edges are unlimited, but vertices have capacities Ex: internet vonting: pactets queue up at vonters/switches So: G = (V, E) + C(v) que capacities on vertices How to do flow? Build G: (with only edge capacities) **Figure 11.1.** Reducing vertex-disjoint paths in G to edge-disjoint paths in \overline{G} .

Reductions: Correctness Solution in G in G > max Alow max flow in G > max flow in Solution So: compute in G Runtine: O(VG)E(G))

Expertite Graphs Any graph where vortices an be divided into 2 sets (usually LAR) St. no bdges exist inside Lor R EX: Maximum matching: find edges (no 2 edges per vortex)

flows: Instead, use Convert G Figure 11.2. A maximum matching in a bipartite graph G, and the corresponding maximum flow in G'. Giadd 2 new vortices, sat, all all veGtoG Edges for G: even edge in Gadd directed vorsloning for all vel, add S-2V For all ueR, add u-2t Sive evon edge cap =1

Algorithm: Given (5= (V,E) with V= LUR (sipertite) // build G (prer side) ÿ=V+2 E=V+E 11 run flow O(VE) = O(V(V+E)) Nget matching track flow paths () any 2 > R edge v (Flow=1 15/in metching untime: Runtine:

Correctness: DAny matching in G > flow in G Stry flow in G >> matching in G therefore, max flow (2) max phone in G

Aside: How?? (FF 15 some how improving matching...) 0 0 000 00 0 0 Ó Figure 11.3. An increasing sequence of matchings connected by alternating paths.

Crazies "word problem" examples A company sells & products, + toeps records on customers. Goal: Design a survey to send to n customets, to get feed back. · Each customer's survey Shouldn't be too long, a should ask only about products they purchased o Each product needs some it of reviews from different customes

Input: - & products -n customers - records of who bought what: and for i. = k, j = n For each customer, . . Ci IS Max # of products to ask then about -for each product, Pils minimum # of reviews needed. Can we design a survey?

	 Λ	. (~	•	÷	, - 	1	N V	\sim											٠								٠						
	 H	ן ב ייי	-	Ø	(_`			ν. 		٠			•	0		•	•	•		•		0	٠	•	•	•	٠	٠						
•	 <u> </u>	T			•			٠						٠						•		٠	•			•	•	•		•		•		
		٠			•		•	٠		•	•			٠						•		٠	٠			٠	•	٠	•	•	•	•	•	•
•	 •	•	•		•	•	•	٠	•	•	•		•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	 •												•					•			•			•										
	 ٠				٠									٠						•		٠	•					٠						
	 •												•					•						•										
•								•	•					•		•	•		•		•	•		•	•		•	•		•				
•	 ٠	•	•	•	•	٠	•	•	٠	•	•	٠	٠	٠	•	٠	٠	٠	•	•	٠		•	٠	٠		•		•	•	•	•	•	•
•	 •	•	•		٠	•	•	•	•	•	•	•	•	٠		•	•	•	•	٠	•	٠	٠	•	•	•	٠	٠	•	•	•	•	•	•
	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
						*																												
					٠				•				•			•	•	•			•	0		•	•									
	 ٠	•			٠			0						٠						٠		٠	•			•	•	٠		•				
								•					٠	•		•	•			•		•	•	•	•		•	•	•	•	•	•	•	
•	 ٠	•	•	•	•		•	0	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	 •	•	•	•	•		•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•
	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•																																		
																•					•			•										
•	 ٠	•	•		•			٠	•	•			•	۰		•	•	•	•	•	•	٠	٠	•	•		•	٠	•	•	•	•		
•		٠	•	•	٠	٠	•	•	•	٠	٠	٠	•	٠	•	•	•	٠	•	٠	•		٠	•	•	٠	٠	٠	•	٠	•	•	•	•
	٠																																	
	•																																	
•	 •				•			٠			•			•						•		•	•			•		•		•				
•	 •	٠			٠		•	•		•	•			٠						٠		٠	٠			•	•	٠	•	•	•	•		•
•	 •		•		•		•	٠	•	•			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠																																	
	•																																	
	•																																	
	 •							•														•				•	•	•						
•	 ٠				•		•	•						٠		•		•	•	•		0	•	•			•		•	•	•			
•	 •	•	•	•	٠	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	
	٠																																	
	•																																	
	•	٠		·	•		•		•	•		•	٠	•	•	•	•		•		·		•	·	•	•			•	•		•		•

· ·	Runhme		correctness
• •	· <u>· · · · · · · · · · · · · · · · · · </u>	· · · ·	
• •			
•••	· · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·
· ·			· · · · · · · · · · · · · · · · · · ·
•••			
••••	· · · · · · · · ·	· · · · ·	
•••			· · · · · · · · · · · · · · · · · · ·
· ·	· · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·
• •			· · · · · · · · · · · · · · · · · · ·
• •			· · · · · · · · · · · · · · · · · · ·
• •			· · · · · · · · · · · · · · · · · · ·
• •			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·