
Algorithms-Spring 2025

Flows + Cuts

Lecap -No class next Monday, and office hours will be wed: 1-3 - HW- due tonight Next HW: flows

More formally: Residual network Gf Given G & f: $C_f(u \rightarrow V) = (c(u \rightarrow v) - f(u \rightarrow v))$ if $u \rightarrow V$ is in E) f(u=>v) if v=>u is in E there edge for of EX: G,F Plow $\frac{5}{5}$ $\frac{5}$

Senc iting a path Angher 5/15 0/15 5 5/10 10 15 5 An augmenting path in G_f with value F = 5 and the augmented flow f'. Is just an s-t path in Gr This Then, find min capacity edge Obuild a new flow whose value is bigger than fis

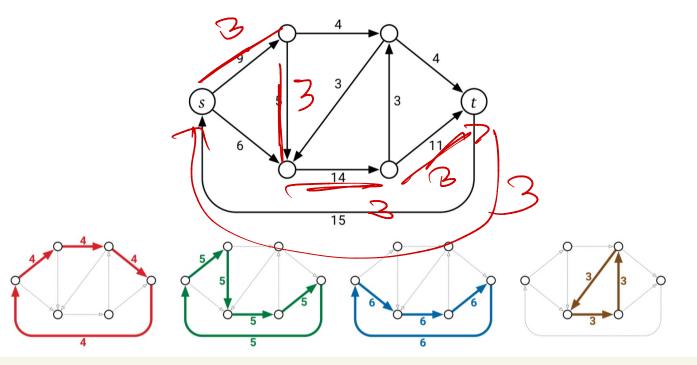
Claim; If f 15 a maximum flow, Then Gf has no augmenting path Proof: by contradiction Assume f 15 maximum Xorrect Buld Gf + find path. Use this path a bigger flow f. Ther f was not Maximur

So: t wasn't a max flow, Since f' IS larger. On other hand: If Ge has no sat path, find SI = set of vertices that s can reach Claim: (S, V-S) is a cut. (+ f uses every S→V-S edge to its max capacity) Why? GS

Immediate Algorithm: (NTE). ft mot flow Sat connected Start with f = O. Build Gp NTE 2003) 27 CNOY While t+s in same component: 5 flow mess find c >f ~ 1 find s->f path via WFS for VIE Augement along the path to to O(V) $f \leftarrow f' \leftarrow$, 11+6 Build Gf $WFS(G_{f}, s)$ Runtine loop repeats 5 fitnes

Why all this integrality stuff? We are assuming each path pushes at least 1 more unit of flow! Can it be that bad? 1 ecch round bottlerect is \rightarrow (s) (t) Yes: that cop=. Figure 10.7. Edmonds and Karp's bad example for the Ford-Fulkerson algorithm. edge How "big" is f? (Remember, not part of input!) f & Golusy) all edge

What if it's not integers? The key o Messyll Ø= 1 #5 10 (a 1N)HY DE Simple: 10 5 Dr


١Ų 1-00 $\boldsymbol{\varsigma}$

assure megors! Continue to push: Ends with: $\phi, \phi, and 1-\phi = \phi^2$ Repeat: $\circ \phi^{Z}, O, \phi^{3}(1-q)\phi$ then But, max flow = 21

General framework: Decomposing flows Given a valid How, ve have an intution that it "follows" paths: But: it's a function! (no peths) $= \underbrace{\begin{array}{c} 0/5 \\ 10/20 \\ \hline 0/10 \\ \hline 0/10 \\ \hline 0/10 \\ \hline 10/10 \\ \hline 10/10 \\ \hline 0/10 \\ \hline 0$ That said, this intuition does hold in some sense.

Formalizing: Linear combinations of flows IN flows: result (ignoring capacities...) $h(u \rightarrow v) = \alpha \cdot f(u \rightarrow v) + \beta g(u \rightarrow v)$ h = 2.5 + 3.1f(u=1)=5 $G(u \rightarrow v) = 1$ Nortex Constants - 2.ft B.g V V all OK

flow ir Flow decomposition Add an edge de compose a flow into Q 6 t. "Sum" of cycles = f OUG.

٠	•	•	•	•	•	•	٠	•	٠	٠	٠	•	•	٠		•	•	٠	•	•	٠		٠	•	•	•	•	•	٠	•	•	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•
٠				•	٠			٠	•	•								•	٠		•		•								•				•		•	٠	•	•	•					•	
٠				٠	٠				•	•								٠					•								•		•		٠		•	٠		•						•	
																																														•	
																										•								•	•							•				•	
•	•	•	•	٠	٠	•	•	٠	٠	٠	•	•	•	٠	•	•	•	٠	٠	•	٠	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	
•	•	•	•	•	•		•	٠	٠	٠	•	•	•	٠				٠	٠	•	٠	•	٠	•	•		•		٠	•	٠	•	٠		٠	•	•	٠	•	•	٠	•	•	•	•	•	
•	•	•	•	•	•		•	•	•	•	•		•	•				•	•		•		•	•		•	•		•		•	•	•		•	•	•	•		•	•	•	•	•	•	•	
	•			•		•			٠	٠						•	•	٠			٠		•			•		•			•	•		•		•	•	•		•		•	•	•	•	•	
			•	•	•			•	•	٠				•				•	•		•		•						•		•		•		٠	•	•	٠	•	•	•						

Why care? Suggests general strategy in FF of "find a peth & push" will always get you to best flow (if integer copacity). Let's see how it works...

Faster Versions This is an active area of research. We'll see two faster examples, both (relatively) Simple variations on the Rord-Fulkerson algorithm: (1) Edmonds - Karp: Choose largest bottlenockedge (> C(E² log E log) F*1) (2). Shortest augmenting. path (fewest edges)) O(VE²)

Edmonds - Karf Largest bottlenect: how? âte Ge: A flow f in a weighted graph G and the corresponding residual graph G_f . Grow a tree from s, adding largest edge out each time -> Similar to HW! Kuntme' - of MST: Elog V

E-K MAXFADD (G): Replace: Flog V Let fle)=0 initially Ve Construct Gf While there is s-t path in Gr; Let p be a simple augmenting f' augment (f, p) the Viti f f f' update Gr Let pbe the largest bottleneck return f path #of repetitions in loop? In FF, went down by > Here? Hopefully better! Key: look at current flow

loop repetitions: Consider current flow: A flow f in a weighted graph G and the corresponding residual g Residual graph: Also a flow graphe Let f'be max flow in GF. Gf has f'flow, & at most E paths from stot => One of them is!

P- + vert So: adds = f' to flow > next residual graph will have $\geq (1 - \pm) f'_{R} in it$ > (I-tel) for repetitions What is l? Well, l= Elnf* / repetitions, $(1-ter)^{\ell}f^{*}c^{\prime}1$ Wait: 41?? Smust hat O, since intego valued

 $= \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left($ · J. · · · · · · · · \mathbf{O} . gnalle

E-K MAXF/000(G): Let fle)=0 initially Ve Construct Gf Replace. While there is sot path in Gr; Let p be a simple augmenting f' augment (f, p) paths f < f' Let pbe the largest bottleneck update Gf return (path maide ct Joopi find bottlenect: Ebg V + (V+E) + # iterations: EInf $\Rightarrow O(E^2 \log V M L)$

min #of egges Shortest paths & (Let p = shortest MAXFLOW (G): TS-t path Let fle)=0 initially V Construct Gf (# edges, not capacities) while there is s-t path in G_{F} Let p be a simple s-t path $f' \neq augment(f, P)$ $f \neq f'$ $update G_{f}$ return f Which traversal? (BFS (So Inside of loop = O(V+E)

Q: How many times do we need & path? (ie: now many repetitions of the while loop?) L. L. J. J. J. J. Think of Gf, + the BFS Thee rooted at s. (. E feres what changes after we push flow? S + bottle recky bottlereck + bottle recky t h fliw ver Gr Stand

Let Go = initial Gp 4 G? = residual graph after i repetitions of the loop. Gi has a BFS tree Ti, so let level; (v) = depth in tree BFS free? (Note: once s can't reach t, Hen $|evel(t) = \infty$) 10/10 10 10 10 15 5 5 5 15 A flow f in a weighted graph G and the corresponding residual graph G_f

Claim: levels only get get bigger in each round. proof: induction on level. (fix c) base case: S (level O), always stays 20 Itt: consider levels 54 in Gi. for any such u on level 5k $level_{i-1}(u) \leq level_i(u)$

IS: now take v on level K+1 of G? Must be a path $\leq \sim$ tele hjust before von path Now: how did we get this party in Ge? edges

Cont ! u->v IS an edge in Gi-1ª $|evel_{i-1}(v) \neq |evel_{i-1}(u) + |$ - might have come from pushing in 61-1 here, it came from pushing a shortest pett in the last round, So V-24 Wes used last round.

Edges can disappear townony times? Then: fleves G_{i}° G_{i+1}° \bigcirc goes up 12, after V2 rounds level (v 7 @ V Bigger! level (v) got bigger

In each iteration of the loop Some edge disappears >> V. E repetitions lotal: Let p = shortest MAXFLOW (G): A's-t path (# edges, not capacites) Let fle)=0 initially Ve Construct Gf while there is s-t path in G_{f} tet p be a simple s-t path $f' \in augment(f, P)$ $f \in f'$ VoF (V+E) update Gf ZVE2 return f

Technique	Direct	With dynamic trees	Source(s)
Blocking flow	$O(V^2E)$	$O(VE\log V)$	[Dinitz; Karzanov; Even and Itai; Sleator and Tarjan]
Network simplex	$O(V^2E)$	$O(VE \log V)$	[Dantzig; Goldfarb and Hao; Goldberg, Grigoriadis, and Tarjan]
Push-relabel (generic)	$O(V^2E)$	-	[Goldberg and Tarjan]
Push-relabel (FIFO)	$O(V^3)$	$O(VE \log(V^2/E))$	[Goldberg and Tarjan]
Push-relabel (highest label)	$O(V^2\sqrt{E})$	_	[Cheriyan and Maheshwari; Tunçel]
Push-relabel-add games	_	$O(VE \log_{E/(V \log V)} V)$	[Cheriyan and Hagerup; King, Rao, and Tarjan]
Pseudoflow	$O(V^2E)$	$O(VE \log V)$	[Hochbaum]
Pseudoflow (highest label)	$O(V^3)$	$O(VE\log(V^2/E))$	[Hochbaum and Orlin]
Incremental BFS	$O(V^2E)$	$O(VE\log(V^2/E))$	[Goldberg, Held, Kaplan, Tarjan, and Werneck]
Compact networks	_	O(VE)	[Orlin]

Figure 10.10. Several purely combinatorial maximum-flow algorithms and their running times.

mes - str Complex de sidual graphs not

technique

Still active:

	•		•		•	•••	•		
٠	٠	٠	٠	٠	٠	Showing 1–50 of 368 results for all: maximum flow in graphs Search v0.5.6 released 2020-02-24	٠	٠	
٠	•	•	•	٠		maximum flow in graphs All fields 🗸 Search	•	•	
٠	٠	•	٠	•	•	Show abstracts Hide abstracts	•	•	
•	٠	•	٠	٠	•	Advanced Search	•	•	
•		•	•	٠		50 V results per page. Sort results by Announcement date (newest first) V Go	•	•	
•	•	•	•	•			•	•	
•	٠	٠	٠	٠	•	1 2 3 4 5 Next	•	•	
	٠	•	٠	٠	•	1. arXiv:2503.20985 [pdf, ps, other] cs.DS	•	•	
	•					Deterministic Vertex Connectivity via Common-Neighborhood Clustering and Pseudorandomness		•	
						Authors: Yonggang Jiang, Chaitanya Nalam, Thatchaphol Saranurak, Sorrachai Yingchareonthawornchai Abstract: We give a deterministic algorithm for computing a global minimum vertex cut in a vertex-weighted graph <i>n</i> vertices	•	•	
		•		٠		and m edges in $\widehat{O}(mn)$ time. This breaks the long-standing $\widehat{\Omega}(n^4)$ -time barrier in dense $ abla$ More Submitted 26 March, 2025; originally announced March 2025.			
	٠	٠	•	•		2. arXiv:2503.13274 [pdf, ps, other] cs.DS	•		
						Parallel Minimum Cost Flow in Near-Linear Work and Square Root Depth for Dense Instances Authors: Jan van den Brand, Hossein Gholizadeh, Yonggang Jiang, Tijn de Vos	•		
						Abstract:edge graphs with integer polynomially-bounded costs and capacities, we provide a randomized parallel algorithm			
	٠		٠	٠		for the minimum cost flow problem with $ ilde O(m+n^{1.5})$ work and $ ilde O(\sqrt{n})$ depth. On moderately dense graphs ($m>n^{1.5}$), our algorithm is the fir $ abla$ More			
	٠	•	•	٠		Submitted 17 March, 2025; originally announced March 2025.			
	•					3. arXiv:2502.09105 [pdf, other] cs.DS Incremental Approximate Maximum Flow via Residual Graph Sparsification			
						Authors: Gramoz Goranci, Monika Henzinger, Harald Räcke, A. R. Sricharan			
	٠	•				Abstract:maximum flow in undirected, uncapacitated n -vertex ${ m graphs}$ undergoing m edge insertions in $ar{O}(m+nF^*/arepsilon)$ total update time, where F^* is the $ abla$ More			
						Submitted 13 February, 2025; originally announced February 2025.			
						$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	C	, _	J
	. (^ .			(.)	JOLE THE SPECIAL CLESSE	1		
)	Ň	\geq			V.]	
					۲				
			5			AND SPUISE CIU			
	·	·	ł		. /		·		

zraph