Algorithms- Spring 25

Kear o HW: due Wednesday · Next HW: up Wed, due the following Friday (?) Next Monday, NO Class. Office hours will be liked. from 1-3pm (next weet)

More formally: Flow Given a directed graph with two designated vertices, 5 and 5. Each edge is given a capacity C(e). Assume: - No edges enter S Max flow: Find most I can send from S to to without exceeding edge capacitles. Min cut: find lightest set of edges separating 5 from t

formalizing (10w): A flow is a function f: E-> Rt, where fle) is the amount of flow going over edge e. Must satisfy 2 things: > Peasible C · Edge constraints: 05 f(e) = C(e) don't overflue edge) flow in to v o Verfex constraints: v = sort = Z Howar 5 only 5 can ship out the other vertex 0/5 Q that then the 0/100/100/100/100/155/155/105/20Value (F) = S(S) = Z f(e)e out of s = SP(e) e into t An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

on notzton + Conver

0/5 5/15 10/2010/10 5/10 10/10An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity. a function on edges L L Capaart POSIT C make (So vertex constraints

TOMMENZING fle An s-t cut is a partition of vertices into 2 sets, 5 and T, so that SES $+ \in \overline{1}$ • $S \cap T = \phi$ 10 10 SUT=V An (s, t)-cut with capacity 15. Each edge is labeled with its capacity. The capacity of a cut is $\sum c(uv)$ with nes, vet

Thm: (Ford - Fulkerson'54, Elics-Feinstein-Shennon'56) The max flow value R = min cut value Wow, and One way is easy: Any flow = any cut. (why! 1' Can exceed edges out of S + into J

lore formally's 6 any **Proof:** Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing inequalities: (le) $|f| \neq \partial f(s)$ [by definition] $= \sum \partial f(v)$ [conservation constraint] [math, definition of ∂] $=\sum_{v\in S}\sum_{w}f(v\to w) - \sum_{v\in S}\sum_{u}f(u\to v)$ $= \sum \sum f(v \to w) - \sum \sum f(u \to v) / \text{[removing edges from S to S]}$ $=\sum_{v\in S}\sum_{w\in T}f(v\rightarrow w) - \sum_{v\in S}\sum_{u\in T}f(u\rightarrow v)$ [definition of cut] $\leq \sum \sum f(v \to w)$ [because $f(u \rightarrow v) \ge 0$] $\leq \sum \sum c(v \rightarrow w)$ [because $f(v \rightarrow w) \le c(v \rightarrow w)$] $v \in S w \in T$ = ||S, T||[by definition]

More carefully: Choose flow f + cut (S,T) / Value(f) = Sf(s) = Sf(s) = S = Value(f) = Sf(u)then Since flow in = flow out for all v 7 Sort, 8(1) - flow out of Physinto V SAS P Solv) aby dhofd ZZ Z F(V->W) - Z f(W->V) VES L WEV VES L S(V) 20 of any edge entirely on J Side is counted twice

SS F(W->V) VES WES = Z Z f(V->W) -VES WES then if w\$\$ prow wET (because it's c cut!) S S F(N-3N) - S S F(N-3N) NES WET VES WET S D blo Flow SO & SS F(V-SW) & flow = COP VES WET

Key tool in proct. Ein Gf 2 fredes Residual network Gp A flow f in a weighted graph G and the corresponding residual graph G_f . Intuitively: Shows how much more (or less) flow can be pushed through an edge.

Why can't we just be greedy & push? 10/107 10 HI 10 00 10/10 Hover out Can get "Stuck" if we choose wrong initially: Are there any more flow paths? S 0 9 1 9 0

More formally: Residual network Gf Given G & f: $C_f(u \rightarrow V) = (c(u \rightarrow v) - f(u \rightarrow v))$ if $u \rightarrow V$ is in E) f(u=>v) if v=>u is in E there edge for of EX: G,F Plow $\frac{5}{5}$ $\frac{5}$

Auguenting a path: send more! 15/ 10 An augmenting path in G_f with value F = 5 and the augmented flow f'. Is just an s-t path in Gr This Then, find min capacity edge on that Claim: I can build a new flow whose value is bigger than f's

Next: Show that can get them equal. How? Well, take some flow. Ether: DE 15 maximum. If so, And a cut of the same volue. 2 Or, it isn't! La Find a logger flow. use ang path d Ge

è tugi C 50 0/5 10/20/15 5/10 10/10 10 15 10/10 10 A flow f in a weighted graph G and the corresponding residual graph G_f . Build f 5/1510/25 0/15 5/10 5/110 10/10An augmenting path in G_f with value F = 5 and the augmented flow f'.

More Formally, given path PEGF with bottleneck F=C: Not our $f' = (-if uv \notin P) f'(uv) = f(uv)$ IF $\overline{uv} \in P$ and $\overline{uv} \in G$: $f'(\overline{uv}) = f(\overline{uv}) + c$ $\left[\begin{array}{ccc} P & P \\ P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \\ P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \right] \left[\begin{array}{cccc} P & P \end{array} \left[\begin{array}{cccc} P & P \end{array} \left[\begin{array}{ccc} P & P \end{array} \left[\begin{array}{ccc$ IF UVEP and VUEG: $f'(\overline{uv}) \ge f(\overline{uv}) - C$

Claim: f' is also a feasible flow! Why? Need ease + vortex constraints: • For any u->v not on augmenting path, filuw = flow! So uncharged a still 2 Cop(u=v) For u=>v on augmenting path, If u=>vEG: Choose buest bottleneck OB SO TC will not except cop. know can Subtract A(N->V) because IF v->n EG: that bes part of bottle vedtalso

And vertex constraints: Consider V: If not on peth: Unchanged So If Phad J(J)=0, SAIL fre If on path in Gr. >. MG: tc tc $\mathcal{F}(\mathcal{N}) \geq \mathcal{O}$ -) at

Claim; If f 15 a maximum flow, Then Gf has no augmenting path Proof: by contradiction Assume f 15 maximum Buld Gf + find path. Xorecto Use this path a bigger flow f. The fues not Maximum

So: t wasn't a max flow, Since f' IS larger. On other hand: If Ge has no sat path, find SI = set of vertices that s can reach Claim: (S, V-S) is a cut. (+ f uses every S->V-S edge to its max capacity) Why?

Immediate Algorithm: Start with f= O. Build Gr $WFS(G_{f}, S)$ While t+sin same component: find S > f path via WFS Augement along the path to Build Gf $WFS(G_{f}, s)$ Runtine !

Why all this integrality stuff? We are assuming each path pushes at least 1 more unit of flow! Can it be that bad? **→**(s) 1 Figure 10.7. Edmonds and Karp's bad example for the Ford-Fulkerson algorithm How "big" is f? (Remember, not part of input.)

What if it's not integers? toy o Messyll Ø=1+J5 $|\Omega|$ Įά JH ÔĿ Simple: la }2 5 10 - 17= $\left(s \right)$ \bigcirc

١Q 1. . . $\boldsymbol{\nu}$

Continue to push: Ends with: $\phi, O, and 1-\phi = \phi^2$ Repeat: ϕ^{Z}, O, ϕ^{3} then P.TC. But, max flow = 21

Faster Versions This is an active area of research. We'll see two faster examples both (relatively) simple variations on the Rord-Fulkerson algorithm: (1) Edmonds - Karp: Choose largest bottlenockedge (> C(E²/og Elog/F*/) 2. Shortest augrenting. path > O(VE²)

Technique	Direct	With dynamic trees	Source(s)
Blocking flow	$O(V^2E)$	$O(VE\log V)$	[Dinitz; Karzanov; Even and Itai; Sleator and Tarjan]
Network simplex	$O(V^2E)$	$O(VE \log V)$	[Dantzig; Goldfarb and Hao; Goldberg, Grigoriadis, and Tarjan]
Push-relabel (generic)	$O(V^2E)$	-	[Goldberg and Tarjan]
Push-relabel (FIFO)	$O(V^3)$	$O(VE\log(V^2/E))$	[Goldberg and Tarjan]
Push-relabel (highest label)	$O(V^2\sqrt{E})$	_	[Cheriyan and Maheshwari; Tunçel]
Push-relabel-add games	-	$O(VE \log_{E/(V \log V)} V)$	[Cheriyan and Hagerup; King, Rao, and Tarjan]
Pseudoflow	$O(V^2E)$	$O(VE \log V)$	[Hochbaum]
Pseudoflow (highest label)	$O(V^3)$	$O(VE\log(V^2/E))$	[Hochbaum and Orlin]
Incremental BFS	$O(V^2E)$	$O(VE\log(V^2/E))$	[Goldberg, Held, Kaplan, Tarjan, and Werneck]
Compact networks	_	O(VE)	[Orlin]

Figure 10.10. Several purely combinatorial maximum-flow algorithms and their running times.

rogi Ines z stru Complex de esided graphs not

techniques

Still active:

• •	maximum flow in graphs	All fields	~	Search
	● Show abstracts ○ Hide abstracts			
			Adv	anced Searc
	50 V results per page. Sort results by Announcement date (newest first) V Go			
• •	1 2 3 4 5	Next		
• •	1 arXiv:2503.20985 [ndf. ps. other] cs.ps			
	Deterministic Vertex Connectivity via Common-Neighborhood Clustering and	Pseudorandomness	5	
	Authors: Yonggang Jiang, Chaitanya Nalam, Thatchaphol Saranurak, Sorrachai Yingchareonthaworn	chai		
	Abstract : We give a deterministic algorithm for computing a global minimum vertex cut in a vertex- and m edges in $\widehat{O}(mn)$ time. This breaks the long-standing $\widehat{\Omega}(n^4)$ -time barrier in dense $ abla$ More	weighted graph n vertices	5	
	Submitted 26 March, 2025; originally announced March 2025.			
• •	2. arXiv:2503.13274 [pdf, ps, other] cs.DS			
• •	Parallel Minimum Cost <mark>Flow</mark> in Near-Linear Work and Square Root Depth for	Dense Instances		
	Autnors: Jan van den Brand, Hossein Gnolizaden, Yonggang Jiang, Tijn de vos Abstract:edge graphs with integer polynomially-bounded costs and capacities, we provide a ran	domized parallel algorithn	n	
	for the minimum cost ${f flow}$ problem with $ ilde O(m+n^{1.5})$ work and $ ilde O(\sqrt{n})$ depth. On moderately de	ense <mark>graphs</mark> ($m>n^{1.5}$),		
	Submitted 17 March, 2025; originally announced March 2025.			
	3. arXiv:2502.09105 [pdf, other] cs.DS			
• •	Incremental Approximate Maximum Flow via Residual Graph Sparsification			
	Authors: Gramoz Goranci, Monika Henzinger, Harald Räcke, A. R. Sricharan	ntione in Õ(m + m E* /s)		
	total update time, where F^* is the \bigtriangledown More	$(m + nF^+/\varepsilon)$		
	Submitted 13 February, 2025; originally announced February 2025.			
• • •	· · · · · · · · · · · · · · · · · · ·		•	· · (
• • •		$\cap \cap \cap \circ$		d
· · ·	$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$	-216-	2	\mathcal{O}
) (<u>)</u> ()	The the skewing of			

s of graph