
Algorithms - Spring25

DP :
BSTs (again)
DP on trees

Recap
posted

-HW3(
-HW1 graded
↳ are comments visible

now in Gradescope?

- Readings up through
next Week

-Sub next Monday
↳ my

office hours

will move
to thes a

Wed.

Balancedsearch frees (again)

Recall :
What is the "best" one?

Recop ; ④
-

⑮
Time to search for K inT

= Oldepth in tree of
k)

↓
Goal : Given frequencies , built
best BST for those frequencies.

Example :

f:0
,
1

,

1
, 2, 8

assume

I sorted
A : 1 , 2 , 3, 4 , 5

Many BSTs :
which is best ?

①

highanced
K

⑪
Constructionmethods we've studied
in data structures :

↳ balanced
&

His notation :

⑳Cost (k)=
Best tree for slice

of array
from ...

KE ↑Exif18 - frequencies
sortedsear->As in puentres -

Think brute force !

vorseOpt (3 ,5 = best of
108

= t 31t

·32cost: 27 cost: 23 16

Here : given XI .. n]

F[I . n]

element X[i] will have

Fli] searches .

Intuitively - want higher F[i]
to be closer to the

root !

wroot ⑤
Last Chaptero comp

left
items /

⑳-
1right iters

=> X[r] is done

recursor
↓ f
- X

W T

Why ?? ⑮-
LAErYYAGr]

↳ ↳
I
-

Every
mode pays

+1 for3the root , becausesearch
path must

compare

So: we're regrouping
!

-

Cost Fildepthintreefreesee
level i

Clevelsor daper)
Here : leve O = root Effi)

rest : recursion

Optcost (1 , n]
M ↓

↓#G
Use this to build the="best" tree :

Choose root. ~
-

Recursively find best left
subtree

,
a best right

subtree.

(Note : try all roots in
back tracking

!)
O

g--smaller Pickis

How to memoize?

-
Remember input :

#
build best tree here

K

Everyone here payfi),

so
first precomputed

stove these sums
.

Time/space : O(n2)

E

OptCost(i , k)

Erick
cost
at ↑root,O ----

itif Optcost(i,i+2)plusletost)
-OP opt cost

(i +4, 4)

Let F(i][]=fj]
Now :

co↳O-- *->
FI H
Optlost(5 ,1 =En
memoze : Oi = ken

So : 21 table !↳Each OTiJTk] ne
- FliJ[k]
- and lookup slice of

now a column it
lives in

His picture (prettier) :

N
So :

Time: On) time per call me
-

- O(n)
array

Space: O(nit)

RamDogan,a b
(nice preview of graphs)

⑧ O
o C

o O
j

O
00
O

000

-

Notoriously hard !-
But- can solve on simpler

graphs.

Irees :

Not always binary !

⑧

- ⑪
1fn : Connected , acyclic

graph
.

Here, we will "root" the tree.
-

Independent set in a tree
:

lessclear :
↳
d

19
·↳
So-not always "grebbiggest
level" .

(ie- don't be greedy!)

oroch :Recursive apl
consider the root.

could include
,
or not.

Back tracking'forbeingnot
It

include
V

↓
E MIS(w)

(mustStepMIS(v)
=wall chida)
-

II

Max indep E2MIS(w) dontunde
set in Gcouldsubtree wall nee
rookedmodev (w) children

⑭ basecase. = 1

His recurrence (in code) :

-V
-

=>
->

Q : Given this recursion,
are

function
we can,, se

Yes ! Each node called
- while a child and

a grandchild
memoise !

How to memoze :

Well
,
for each mode

,
need

the best set in that

subtree.

Even better - 2 values
!

(same big-O)
For each v, store

- Best setwith
v

-BestSet without v

Think data structures :

Nodev =S without)

So : use a tree for the
-

data Structure
If done

* S
D

-

Note: At heart, still ast-order
traversal .

yarot O(n)
T

/9) time

· O(n) space

hamicProgramming vs Greedy
Dyn . protyallpossiblea
In

greedyalgorithms,,

How?
Some part of the

problem's structure lets
us nick a local
"best") and have it[lead to a global best.

But - be careful !

Studentsdesggreedydon't

yields the best global
one

Overallgreedy strategy :

C· Assume optimal is different
than greedy

· And the "first" place theydiffer-

· Argue that we can exchange
the two without making(optimal worse.

=>thereisno"
ready in fact isSo Goptimal solutiono

First example in the book :

Storing ites on tape.

Input : n files
,
each with

a length×
-

it will be accessed :

L[l .. n] & F[loon]
-

-

I

length Efregenay
Goal : Minimize access <me ;

hard drive &
is:e.↳X

[[I] 192] [f3] Ln]
-> T Hem3
P access

F[3] times

P + LE2]

costh -

Files : order It :
-

tapeis !"InH() T(z)π(3)
-

cost to access it one :

Total :

-

How to be greedy ?
(Not immediately clear !)

Try smallest first :

Try most frequent first :

-emma: Sort by Lis
I will get optionalchedule.
If : Suppose we sort :

/
...

11

& Vi,

Supposeisnotope
a

wall
,
opt must be different,

so 7 out of order par

OPT
X

a at

withD
If opT ,

must beat our

"sorted" solution.

What if we swap
a t att ?

Before :

After

difference?

Pf (cont) =

So : algorithm
· Calcutatey for all a

permute order of
· Sort, to match

Runtime :
-

