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Backtracking :
US

Optimal BSTs



Recap
· Readings posted

for

next 3 class days
·HW] posted
↳ Note on runtimes :

Do want some

recurence/justification
-

But don't need to
-

solve if
"Obviously"

exponential
· Reminder: do have slack

space



SubsequenceLongestIncreasing
List ofS .

Want longest subseg
which is increasing .

Why "jump
to the middle" ?

Need a recursion !
-

Est : how many subsequences ?
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could be
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Why not greedy ?
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Result :
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A[j] is too small -> must

Skip.



Code version :
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Problem-what did we want ??
We wanted Longest
Inc Subsequence of A.

#
↓

So : 1



undme :

T(n) = 2T(n -1) + 6
O(1)

↳ Hanoi-like

= T(n)= 0(2))

M

ET(i) +O(n)-S- (n) =I i= 1

exponential



Alternative approach :

And
O n-1

-

At index i , choose
next

element in the sequence
.[ (meansn calls

,
not 2

!)
usio + 0

check ifcana
->X AG]
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Issue - what was
ourgoal

again ?? top level
:

A
out was (noi)(n)



Final
version:a
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&untime :

T(k)=[*T-)]+

=(T) +On

exponential



OPId Binary Search trees :
The idea : O I

·

KeysAndre
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accessrequency
for cto
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Compare to balanced BST :

↓
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Example :
- ↓ I

-: xarted
- assume

-

Many BSTs :
which is best ?

cost : SBalanced : Effis depth(i)
-B = I

- Y x = 100 .3 + 1.2 + 11
↳

+2 .2 +5 .3

Construction methods we've studied

in data structures :

OBest X cost=↳ -AVL ① 100 :1
-treap ⑮ + 8 .2Red-Black ④ +203

⑪ +1 . 4#S
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Formula : ⑮
A
-

Di
+1 forEverynode pays search

the root
,becauseeto it,

path must cost tree
Cost (T, f)=

Best
So : ultreg

counts inf

·left

-
-Do
4-

=> pays to compare
atroof

find best root

-
Firsid
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Recurrence-

-

T(n) = 0 (n)

+(TT

D



-DynamicPrograming
- a funcy term for smarterrecursion :

memoization

- Developed by Richard Bellman
14 mid-1950s

[programming "here actual ly
means planning or scheduling)

↓: When recurs IfLey recursive "S calls
aroverlapping subcases,
remember orior results
and don't do extra
work !



Simpleexample :

Fibonacci Numbers

FFa
Fn = 2
-

Directly get an algorithm :

B or1

return n >
0#(n+ Fish-2)

else
return

Fibpo) -FBFsRuntime : -> FB(T)

F(n) =F(n -1) +F(n -2)
+ O(1)

= O(p") exponental



Applyingmemorization :

FiTe
First time,

do the

recussion

Later times

↳ look up
in

table



&

Better yet :

-

correctness:.
T-

Runtimespace

single for loop

O(n)



Even better!

Buntime/space :


