
Algorithms-Spring'2S

Backtracking :
US

Optimal BSTs

Recap
· Readings posted

for

next 3 class days
·HW] posted
↳ Note on runtimes :

Do want some

recurence/justification
-

But don't need to
-

solve if
"Obviously"

exponential
· Reminder: do have slack

space

SubsequenceLongestIncreasing
List ofS .

Want longest subseg
which is increasing .

Why "jump
to the middle" ?

Need a recursion !
-

Est : how many subsequences ?

AMDIn
1 z i

↳ Each element
could be

in or
out : In

&photos an

Why not greedy ?

2 ,
11
,
3
,
88

- 5
,
63
,
65
,
4
,
5
,
6

↳ s (0 , 1) T
LIS10,3

↳ us (0 , 2) -> LS(2,3)
T1

Ls(1 ,2)+
↳stay is smaller

↳ LIS(1 ,3)

Result :
-

Ilastmentmentoaenting
E L

A:4
Recursion : -
-

- 3- ⑳
--

⑨ -
T

S-tS
pi

A[j] is too small -> must

Skip.

Code version :

15 is wa
- -

-

~ Pip
--

-

-

-O
-

Problem-what did we want ??
We wanted Longest
Inc Subsequence of A.

#
↓

So : 1

undme :

T(n) = 2T(n -1) + 6
O(1)

↳ Hanoi-like

= T(n)= 0(2))

M

ET(i) +O(n)-S- (n) =I i= 1

exponential

Alternative approach :

And
O n-1

-

At index i , choose
next

element in the sequence
.[(meansn calls

,
not 2

!)
usio + 0

check ifcana
->X AG]
G
-

-

Issue - what was
ourgoal

again ?? top level
:

A
out was (noi)(n)

Final
version:a

st

co element
X 3 &

-

&untime :

T(k)=[*T-)]+

=(T) +On

exponential

OPId Binary Search trees :
The idea : O I

·

KeysAndre
I

·

accessrequency
for cto

- IS

↳SeichG
Tree : Asi]

a

of[i]

cost to find

A[i] ? ATT1 &Y

=dep(a)- ↑
00 costs4

Cost(T)= -depth)

f[] depth [fi)

Compare to balanced BST :

↓

19

I 1 Iloghgrt9
112db %000

worst case time

Ollogan)
&

Example :
- ↓ I

-: xarted
- assume

-

Many BSTs :
which is best ?

cost : SBalanced : Effis depth(i)
-B = I

- Y x = 100 .3 + 1.2 + 11
↳

+2 .2 +5 .3

Construction methods we've studied

in data structures :

OBest X cost=↳ -AVL ① 100 :1
-treap ⑮ + 8 .2Red-Black ④ +203

⑪ +1 . 4#S

Y

Formula : ⑮
A
-

Di
+1 forEverynode pays search

the root
,becauseeto it,

path must cost tree
Cost (T, f)=

Best
So : ultreg

counts inf

·left

-
-Do
4-

=> pays to compare
atroof

find best root

-
Firsid

↑ in I
↑

find root
r

xA[r]
a &
↳ 11

Optree/) IOpt (r+1, ()
W
-um 1111

-0-110-TI =>n

Recurrence-

-

T(n) = 0 (n)

+(TT

D

-DynamicPrograming
- a funcy term for smarterrecursion :

memoization

- Developed by Richard Bellman
14 mid-1950s

[programming "here actual ly
means planning or scheduling)

↓: When recurs IfLey recursive "S calls
aroverlapping subcases,
remember orior results
and don't do extra
work !

Simpleexample :

Fibonacci Numbers

FFa
Fn = 2
-

Directly get an algorithm :

B or1

return n >
0#(n+ Fish-2)

else
return

Fibpo) -FBFsRuntime : -> FB(T)

F(n) =F(n -1) +F(n -2)
+ O(1)

= O(p") exponental

Applyingmemorization :

FiTe
First time,

do the

recussion

Later times

↳ look up
in

table

&

Better yet :

-

correctness:.
T-

Runtimespace

single for loop

O(n)

Even better!

Buntime/space :

