
CSE 40113: Algorithms Homework 8 Spring 2025

CSE 40113: Algorithms
Homework 8

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, and cite any sources used (including other
students). If you have any questions, please re-read both the homework guidelines and the academic
integrity policy carefully, and then come discuss any questions or concerns with me.

Required Problems

1. A website is trying to analyze the behavior of its customers from recent sales. They store
prior purchase information in a 2-dimensional array X, where the columns correspond to
products and the rows to customers; the entry P [i][j] then specifies the number of items of
product i that customer j has bought in the past year.

For example:

Alice Bob Carol David

stickers 0 6 0 3
tshirts 2 3 0 0
hats 5 0 1 3
mugs 0 3 2 7
cards 3 0 1 0

Now the store wishes to identify a set of customers that respectively purchase different
things, to identify a good subset of customers to poll for feedback on as many distinct products
as possible. In other words, we want to find a large set of the customers C such that no two
customers in C have purchased the same product.

This leads us to the customer poll problem: given the matrix P and a target value k, is
there a subset of at least k customers such that no two have purchased the same product?
Show that this problem is NP-Complete.

Solution: First, show the problem is in NP: Given a set of k customers as a certificate,
we can loop through each product and check how many of the customers in the set have
purchased that product in O(k) time; as long as there is at most one, the set is a solution. If
there are p products, this takes a total of O(kp) time.

Reduction: We reduce independent set to this problem. The input to independent set is
a graph G = (V,E) and a number k. We convert this to customer poll by created a customer
for each vertex in G, and then for each edge, creating a single product that is purchased by
the customers corresponding to its endpoints. More formally, the matrix P is then:

P [i][j] =

{
1 if customer j corresponds to a vertex incident to edge i,

0 otherwise.

Finally, k is unchanged, so k in the customer poll is set to be the same number k as we
got as input to independent set.

The reduction takes time O(V E) total time.

Proof (if and only if):

1



CSE 40113: Algorithms Homework 8 Spring 2025

• If you have an independent set in G, that immediately gives a set of corresponding
customers. Since the set is independent, we know they have no edges between any two
vertices included; therefore, there are no products where both customers purchase, since
these were only created for edges.

• For the backwards direction: suppose you have a good subset of customers. This means
they bought no common products. If we consider the corresponding set of vertices in the
graph, this means no edges can be present between them, since that would have given a
common product.

■

2. Let’s take a look at a more complex resource scheduling problem. Consider a group of n
asynchronous processes. However, these processes might need access to some subset of the
m shared resources. At any given timestep, each process has a set of resources it would like
to use. Each resource might be requested by many of the processes, but it can only actually
be used by one at a time. If a process can gain access to all of its requested resources, it is
active; otherwise, it is blocked.

Your job is to allocate the resources to processes as effectively as possible; here, this means
we would like to allocate so that as many processes as possible can be active. This leads to a
decision version of the question: given a set of n processes, m resources, and a list of requested
resources for each of the processes (so a set of n lists, each of length ≤ m), and a value k, is
it possible to allocate resources to processes so that at least k are active?

(a) Show that this problem is NP-Hard.

Solution: We can again reduce Independent set: for this one, create a process for each
vertex in the graph, and a resource for each edge, where a process requests each resource
that is associated with its edges. In other words, process i requests resource j if vertex
i is incident to edge j in the original graph. Finally, k for the process selection problem
is the same as k for the independent set problem input.

The reduction takes O(V +E) time, since we create V process and E resources, then
then add each of the resources to two lists.

Proof:

• Suppose you have a solution to independent set. Those k vertices directly correspond
to k processes, which I claim cannot have any resource requests in common. To see
this, note that any such resource would correspond to a shared edge in the graph,
so since the set of vertices is independent, no such resource can exist.

• For the other direction: consider a set of k process that share no resources. We
can consider the associated vertices to these, and note that the set of vertices is
independent, since any edge between them would mean a shared resource would
have been created, which is impossible.

■

2



CSE 40113: Algorithms Homework 8 Spring 2025

(b) Suppose now that there are only two types of resources, and each process requires ex-
actly one resource of each type. (Example: say every resource is either a person or a
piece of equipment, and each process requires one specific person and one specific piece
of equipment from the list.) Show that this version of the problem can be solved in
polynomial time (by giving an algorithm).

Solution: This solution is also a reduction, but this time from process section to either
bipartite matching or flows. Create a vertex for every resource; since there are two types,
this naturally corresponds to two disjoint subsets of vertices. Then, create an edge for
every process, and make it incident to the two resources needed (one for each type).
Since edges only go between distinct types, we know this graph is bipartite.

Claim: There is a matching of size k in the graph if and only if there is a set of k
process that we can activate.

Proof: Suppose we have a set of k processes that can all be active. Since they cannot
share resources, this corresponds to a set of edges in the graph where each vertex is
touched by at most one edge, which is by definition a matching of size k. For the other
way, assume we have a matching of size k. These correspond to a set of k processes,
and since in a matching we cannot have a vertex incident to two edges, this means the
resources will not be requested by any two processes in the set.

Runtime: If there are p processes and r resources, we create a graph with r vertices
and p edges. I accepted either O(V E) = O(rp) or O(

√
V E) = O(

√
rp for full credit,

since the book mentions both running times.

Note: you also got full credit for reducing this directly to a flow network.

■

3. In my excitement over the planned Mandalorian movie, I have been hunting for algorithms
problems while re-watching far too much Star Wars. To my delight, I have found several!

Consider the faced by the Rebel Alliance as they fly from the Death Star back to the
secret base on Degobah. We can view the galaxy as an undirected graph G = (V,E), where
each node is a start system and each edge {u, v} indicates you can travel between u and v.
The Death Star is represented by a node s, the hidden Rebel base by a node t. Certain edges
have longer distances than others; thus we will give each edge an integer length le ≥ 0. Also,
certain edges represent routes that are more heavily patrolled by evil Imperial spacecraft;
so each edge e also gets an integer risk re ≥ 0, indicating the expended amount of damage
incurred from the special-effects-intensive space battles if you use this edge.

There is a tradeoff here: it would be safest to travel through the outer rim of the galaxy,
from one quiet far away star system to another, but then the ship would likely run out of
fuel long before getting to its destination. (After all, they are on the run, so stopping to
refuel should be avoided!) Alternatively, it would be fasted to dive through the cosmopolitan
core of the galaxy, but then there would be far too many Imperial spacecraft to deal with.
In general, for any path from s to t, we get both a length (the sum of all the lengths of its
edges), and a total risk (the sum of all the risks of its edges).

So Luke, Leia, and company are looking at a complex shortest path type problem in
this graph: they want to get from s to t along a path whose total length and risk are both
reasonably small. In concrete terms, we will phrase this as the Galactic Shortest-Path Problem

3



CSE 40113: Algorithms Homework 8 Spring 2025

as follows: Given a setup as above and integer bounds L and R, is there a path from s to t
whose total length is at most L and whose total risk is at most R?

Show that Galactic Shortest Paths is NP-Complete.

Solution: First, we show it is in NP: A certificate for this problem is simply a path P =
(v0 = s, v1, . . . , vk = t). We then loop over i from 0 to k and check:

• that the path is valid (adjacent nodes are connected by edges),

• compute the total length
∑k−1

i=0 l{vi,vi+1},

• compute the total risk
∑k−1

i=0 r{vi,vi+1},

• and check whether these sums are ≤ L and ≤ R.

Since each path has O(V ) edges and does O(1) work per pair i, i + 1, this in total takes
O(V ) time.

Reduction: We reduce from the NP-hard problem Partition, which given a set of positive
integers X = {x1, . . . xn}, asks if there is a subset S ⊆ X such that

∑
si∈S

xi =
∑
xi /∈S

xi =
1

2

n∑
i=1

xi.

First, set T =
∑n

i=1 xi, and let L = R = T/2. Now, construct a graph G = (V,E) as
follows:

• Create nodes v0, v1, . . . , vn, where v0 = s, and vn = t.

• For each i = 1, . . . , n, add two edges between vi−1 and vi:

– a top edge with length l = xi and risk r = 0,

– a bottom edge with length l = 0 and risk r = xi.

This construction takes O(n) time, since we need to calculate T and then we create n+1
vertices and 2n edges.

The proof of reduction is the following:

There exists a path from s to t with total length ≤ L and total risk ≤ R if and only if
there exists a subset S ⊆ X with

∑
xi∈S xi = T/2.

Proof: (⇒) Suppose such a path exists. Let S be the set of indices i where the top edge
was chosen. (We know both cannot be chosen, since such a walk would visit a vertex twice,
and in any case could be shortened by removing the cycle.) Then:∑

i∈S
xi ≤

T

2
,

∑
i/∈S

xi ≥
T

2
.

Since
∑

i∈S xi +
∑

i/∈S xi = T , equality must hold: if one of the values is < T/2, the other
must necessarily be larger, in which case it would not solve the galactic shortest paths.

4



CSE 40113: Algorithms Homework 8 Spring 2025

(⇐) Conversely, suppose such a subset S exists. Construct a path taking the top edge if
i ∈ S′, and the bottom edge otherwise. Then:

total length =
∑
i∈S′

ai =
T

2
≤ L,

total risk = −
∑
i/∈S′

ai = −T

2
≤ R.

And we know that the path is a valid solution to galactic shortest paths.

■

5


