
CSE 40113: Algorithms Homework 7 Spring 2025

CSE 40113: Algorithms
Homework 7

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Describe an algorithm to determine whether a given flow network contains a unique maximum
(s, t) flow. Then, give an example of a network that has a unique maximum s to t flow, but
does not contain a unique minimum (s, t)-cut.

2. The Department of Commuter Silence is implementing a more flexible curriculum with a
complex set of graduation requirements. The department offers n different courses, and there
are m different requirements. Each requirement specifies a subset of the n courses and the
number of courses that must be taken from that subset. The subsets for different requirements
may overlap, but each course can be used to satisfy at most one requirement.

For example, suppose there are n = 5 courses A,B,C,D,E and m = 2 graduation re-
quirements:

• You must take at least 2 courses from the subset {A,B,C}.
• You must take at least 2 courses from the subset {C,D,E}.

Then a student who has only taken courses B,C,D cannot graduate, but a student who has
taken either A,B,C,D or B,C,D,E can graduate.

Describe and analyze an algorithm to determine whether a given student can graduate.
The input to your algorithm is the list of m requirements (each specifying a subset of the
n courses and the number of courses that must be taken from that subset) and the list of
courses the student has taken.

1

CSE 40113: Algorithms Homework 7 Spring 2025

3. Ad-hoc networks are made up of low-powered wireless devices. In principle, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters, and
in other hard-to-reach areas. The idea is that a large collection of cheap, simple devices could
be distributed through the area of interest (for example, by dropping them from an airplane);
the devices would then automatically configure themselves into a functioning wireless network.
These devices can communicate only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the
distance between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit
its information to some other backup device within its communication range. We require
each device x to have k potential backup devices, all within distance D of x; we call these k
devices the backup set of x. Also, we do not want any device to be in the backup set of too
many other devices; otherwise, a single failure might affect a large fraction of the network.

So suppose we are given the communication radius D, parameters b and k, and an array
d[1..n][1..n] of distances, where d[i, j] is the distance between device i and device j. Describe
an algorithm that either computes a backup set of size k for each of the n devices, such that
no device appears in more than b backup sets, or reports (correctly) that no good collection
of backup sets exists.

2

CSE 40113: Algorithms Homework 7 Spring 2025

4. Sample solved problem: Suppose you are given a directed graph G = (V,E), with a positive
integer capacity c(e) on each edge e, a designated source s ∈ V , and a designated sink t ∈ V .
You are also given an integer maximum s-t flow in G, defined by a flow value f(e) on each
edge e. Now suppose we pick a specific edge e ∈ E and increase its capacity by one unit.
Show how to find a maximum flow in the resulting capacitated graph in time O(|V |+ |E|).

Solution: The point here is that O(V +E) is not enough time to compute a new maximum
flow from scratch, so we need to figure out how to use the flow f that we are given. Intuitively,
even after we add 1 to the capacity of edge e, the flow f can’t be that far from maximum;
after all, we haven’t changed the network very much. In fact, it’s not hard to show that the
maximum flow value can go up by at most 1:

Claim: Consider the flow network G′ obtained by adding 1 to the capacity of any edge
e. The value of the maximum flow is either v(f) or v(f) + 1, where v(f) is the value of the
maximum flow for the original graph G.

Proof of claim: The value of the maximum flow in G is at least v(f), since f is still a
feasible flow in this network - increasing one edge’s capacity cannot cause f to violate the
edge constraints. It is also integer-valued. So it is enough to show that the maximum-flow
value in G is at most v(f) + 1. By the Max-Flow Min-Cut Theorem, there is some s-t cut
(A,B) in the original flow network G of capacity v(f). Now we ask: What is the capacity of
(A,B) in the new flow network G? All the edges crossing (A,B) have the same capacity in G
that they did in G, with the possible exception of e (in case e crosses (A,B)). But c(e) only
increased by 1, and so the capacity of (A,B) in the new flow network G is at most v(f) + 1.

So we get the following algorithm, which finds if there is an augmenting path in G′
f (our

modified graph) and then adds one to ever edge in that path if it exists:

IncreaseEdge(G, f, e):G′ ← G
Modify G’: increase edge e’s capacity by 1
Build the residual graph G′

f for f in G′

BFS(s)
if t is unmarked:

return f
else

x← t
while x ̸= s

f((p(x), x))← f((p(x), x)) + 1
x← p(x)

For BFS code, I used the following version from page 200 of book which stores parent
pointers, but modified for directed graphs:

3

CSE 40113: Algorithms Homework 7 Spring 2025

BreathFirstSearch(s):
put (∅, s) in queue Q
while Q is not empty

take (p, v) from queue
if v is umarked

mark v
parent(v)← p
for each edge (v, w)

if (v, w) is unmarked
add (v, w) to Q

Proof of correctness: Based on the Maxflow-Mincut theorem from the textbook, f will
still be the maximum flow precisely if there are no paths in the residual network. If a path
does exist in G′

f , we know BFS will find the path, and by our claim above, we know the
overall flow will only one until of flow along that path, since otherwise we would exceed e’s
capacity.

Runtime: We change 1 edge weight, build a residual graph in O(V + E) time, and run
BFS in O(V + E) time. The if statement spends at most O(V) time tracing the path and
updating the flow values. So, total time is O(V + E).

■

4

