CSE 40113: Algorithms Homework 7 Spring 2025

CSE 40113: Algorithms

Homework 7

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Describe an algorithm to determine whether a given flow network contains a unigue maximum
(s,t) flow. Then, give an example of a network that has a unique maximum s to ¢ flow, but
does not contain a unique minimum (s, t)-cut.

Solution: For the first part: First, we can prove that the maximum flow is unique if and
only if the residual graph has no cycles of length > 3. (Note that there are several ways to
prove this, but here is one.)

Forward direction: Suppose the maximum flow f is unique, but that there is a cycle of
length > 3 in the residual graph Gy. Consider the bottleneck edge with weight b on this
cycle, and augment (as in the augmenting path algorithm) to make a new flow f’: for each
edge e = (u — v) in the cycle:

e if u — v isanedge in G we set f'(u — v) = f(u — v) + b. Note that this edge can still
carry at least b more flow without exceeding its capacity, as the weight in the residual
graph is set to be c(e) — f(e), and we know that value is > b.

e if v — w is an edge in G (so this is a “backwards” edge of the residual graph), we set
f'(v—u) = f(v — u) —b. Note that the flow along this edge stays > 0, as the edge in
the residual graph would have weight f(e), and that must be > b.

e all other edges have the same flow

This flow cannot violate the vertex constraint, as the book proves that augmenting along
a path does change the fact that flow in equals flow out along every interval vertex; here,
since we're using a cycle, we know that flow in and out of every vertex is unchanged. Since
this means the flow out of s is unchanged, we have a valid flow f’ with the same value as
f, contradicting our assumption, so there cannot be any such cycle in G if f is a unique
maximum flow.

Backwards direction: Suppose the residual graph has no cycles, but there are two maxi-
mum flows fi; and fo. Create a flow f; — f2, as in section 10.5. Since both flows have the same
value, we know the f; — fo satisfies vertex constraints everywhere, since each of f; and fs do,
and that f; — fo must send 0 flow from s to ¢ since the values cancel. In other words, the
result in a circulation. Since f; # fo, they must differ on at least one edge, so that for some
e, fi(e) — fa(e) # 0. Following section 10.5 again, since flow in is equal to flow out, some edge
¢’ incident to e must also have non-zero flow. Continuing to build a path, we must eventually
find a cycle in the residual graph which has length > 3, contradicting our assumption.

CSE 40113: Algorithms Homework 7 Spring 2025

For our algorithm, the key here is to use the residual graph, and modify a traversal such
as DFS to check for cycles of length > 3:
UniqueFlow(G):
Compute a maximum flow f in G
Build G¢ (see path 331 of book)
if no cycle of length > 3
return true

else

return false

The only remaining thing is to specify how to find if the graph has no cycles of length > 3.
This can be accomplished by modifying any of the WFS variants - in particular, a variant of
the directed DFS on page 231 to either ignore immediate back edges or to then calculate the
length of the cycle found via the edges explored will work here.

It takes O(VE) time to compute a maximum flow, then O(V + E) time to create the
residual graph, and finally O(V 4 E) time for the modified DFS to find cycles. The total
runtime is then O(V E) total.

2. The Department of Commuter Silence is implementing a more flexible curriculum with a
complex set of graduation requirements. The department offers n different courses, and there
are m different requirements. Each requirement specifies a subset of the n courses and the
number of courses that must be taken from that subset. The subsets for different requirements
may overlap, but each course can be used to satisfy at most one requirement.

For example, suppose there are n = 5 courses A, B,C, D, E and m = 2 graduation re-
quirements:

e You must take at least 2 courses from the subset {4, B, C'}.

e You must take at least 2 courses from the subset {C, D, E'}.
Then a student who has only taken courses B, C, D cannot graduate, but a student who has
taken either A, B,C, D or B,C, D, E can graduate.

Describe and analyze an algorithm to determine whether a given student can graduate.
The input to your algorithm is the list of m requirements (each specifying a subset of the
n courses and the number of courses that must be taken from that subset) and the list of
courses the student has taken.

Solution: We create a flow graph quite similar to our bipartite matching problem:

e (G contains a vertex for each class and each requirement, as well as two extra vertices s
and .

e For each class the student has taken, so create an edge directed from s to the vertex for
that class with capacity 1.

e For each class satisfying a requirement, add an edge from the class’ vertex to the re-
quirement’s vertex, with capacity 1.

CSE 40113: Algorithms Homework 7 Spring 2025

e For each requirement, add an edge for the requirement’s vertex to the sink ¢ with capacity
equal to the number of classes needed to fulfill the requirement.

Finally, we run max flow, and answer yes (that the student can graduate) if the flow value
is equal to the sum of the number of classes needed across all requirement categories.

There are m + n + 2 vertices, and < 2 4+ m + n + mn edges total, so the maximum flow
algorithm on this graph (via Orlin) takes O((m + n)mn) time total.

Proof of correctness: This is a reduction, so we need to prove that there is a way to
assign classes to allow graduation if and only if the maximum flow is equal to the sum of
all classes needed across requirement categories. For simplicity, let C[i] be the number of
required classes for category ¢, and let 7' =)", C[i] be the flow we need. First, note that
we cannot have flow larger than T, since there is a cut of this value - all of the edges leading
into ¢.

Suppose there is a way to fulfill all requirements. Then we can build flow paths by
sending one unit from s to the vertex of the class begin used, then one unit of flow over
to the requirement vertex, and finally 1 unit along from the requirement to t. If we fulfill
all T requirements, this is 7' unit size flow paths. We know each class is only used once,
so we will not exceed capacity of the edge from s to the class, and we only use it to fulfill
one requirement, so again we don’t exceed capacity, and since we choose R]i] classes for
requirement category 7 in order to graduate, this means the edges from requirement to ¢ will
all be maximized but will not have above their capacity. Since this flow has the appropriate
value, does not violate edge constraints, and sets flow in = flow out for every vertex except
s and t, we know this results in a valid flow of size T, which is maximum.

Now suppose there is a flow of value T. This decomposes into unit size flow paths from
s to t, which must go from s to a class vertex, then to a requirement vertex, then to ¢t. Use
this flow path to "assign” the class on this path to fulfill the requirement. Since it has value
T, we know each requirement must have R][i] flow paths coming in, which in turn gives an
assignment of R[i] classes as desired. Finally, since the flow paths can only send 1 into each
class vertex, no class can be used for two requirements, so this gives a valid way to fulfill
requirements.

3. Ad-hoc networks are made up of low-powered wireless devices. In principle, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters, and
in other hard-to-reach areas. The idea is that a large collection of cheap, simple devices could
be distributed through the area of interest (for example, by dropping them from an airplane);
the devices would then automatically configure themselves into a functioning wireless network.
These devices can communicate only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the
distance between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit
its information to some other backup device within its communication range. We require
each device x to have k potential backup devices, all within distance D of x; we call these k

CSE 40113: Algorithms Homework 7 Spring 2025

devices the backup set of x. Also, we do not want any device to be in the backup set of too
many other devices; otherwise, a single failure might affect a large fraction of the network.

So suppose we are given the communication radius D, parameters b and k, and an array
d[1..n][1..n] of distances, where d[i, j] is the distance between device ¢ and device j. Describe
an algorithm that either computes a backup set of size k for each of the n devices, such that
no device appears in more than b backup sets, or reports (correctly) that no good collection
of backup sets exists.

Solution: Build a graph as follows:

e Create a two vertices for each device, labeled u; and v;, as well as two other vertices s
and t.

e For all i # j, add an edge with capacity 1 from vertex w; to vertex v; if d[i][j] < D.
e For all vertices u;, add an edge from s to u; with capacity b.

e For all vertices v;, add an edge from v; to t with capacity k.

We then compute the maximum flow in this graph. If the flow has value < nk, answer
that no good collection exists. If the max flow has value nk, we look at the edges u; to vj,
and for any such edge with flow value 1 along it, we add device 7 to device j’s backup list.
(Since there is a cut of size kn, consisting of all edges from v; to ¢, we know there cannot be
a larger flow.)

Runtime: Flow takes O(V E) via Orlin, and we have V = 2 +2n and E < 2n + n?, for a
total of O(n?) time.

Proof of correctness: If there is a flow of value nk, we can decompose this into flow paths,
and for any edge u; to vj, if the flow values is 1 then assign device i to be on device j’s backup
set. For every ¢, we know that u; has at most b flow coming in, so that means there are at
most b outgoing edges with flow value 1, and hence device ¢ will not be on too many backup
lists. For every value, we also know that the edge v; to t carries k flow, since that’s the only
way to equal kn total, so we know exactly £ flow is coming into v; and hence there will be &k
devices assigned as backups.

If we have an assignment of devices as backups so that each is on at most b lists and has
exactly k backups, we can translate this to a valid flow in the network of value nk: for each
assignment of device ¢ to device j as backup, create a flow path s — u; — v; — t of one
flow unit. Clearly, given this respects vertex constraints, since any flow in to u; or v; also
leaves via the next edge. Given the size of the lists and the limits on how many each device
is assigned, we know that at most b will be going in to any u;, and exactly k will be coming
out of each v;, so our flow will also not violate the capacity constraints.

CSE 40113: Algorithms Homework 7 Spring 2025

4. Sample solved problem: Suppose you are given a directed graph G = (V, E), with a positive
integer capacity c(e) on each edge e, a designated source s € V', and a designated sink ¢ € V.
You are also given an integer maximum s-t flow in G, defined by a flow value f(e) on each
edge e. Now suppose we pick a specific edge e € E and increase its capacity by one unit.
Show how to find a maximum flow in the resulting capacitated graph in time O(|V| + |E]).

Solution: The point here is that O(V + E) is not enough time to compute a new maximum
flow from scratch, so we need to figure out how to use the flow f that we are given. Intuitively,
even after we add 1 to the capacity of edge e, the flow f can’t be that far from maximum;
after all, we haven’t changed the network very much. In fact, it’s not hard to show that the
maximum flow value can go up by at most 1:

Claim: Consider the flow network G’ obtained by adding 1 to the capacity of any edge
e. The value of the maximum flow is either v(f) or v(f) + 1, where v(f) is the value of the
maximum flow for the original graph G.

Proof of claim: The value of the maximum flow in G is at least v(f), since f is still a
feasible flow in this network - increasing one edge’s capacity cannot cause f to violate the
edge constraints. It is also integer-valued. So it is enough to show that the maximum-flow
value in G is at most v(f) + 1. By the Max-Flow Min-Cut Theorem, there is some s-t cut
(A, B) in the original flow network G of capacity v(f). Now we ask: What is the capacity of
(A, B) in the new flow network G7 All the edges crossing (A, B) have the same capacity in G
that they did in G, with the possible exception of e (in case e crosses (A, B)). But ¢(e) only
increased by 1, and so the capacity of (A4, B) in the new flow network G is at most v(f) + 1.

So we get the following algorithm, which finds if there is an augmenting path in G} (our
modified graph) and then adds one to ever edge in that path if it exists:

IncreaseEdge(G, f,e):G’ + G

Modify G’: increase edge e’s capacity by 1
Build the residual graph G for f in G’
BFS(s)
if ¢ is unmarked:

return f
else

T 41

while z # s

F((ple)2) — F((p(a),2)) +1

T < p(z)

For BFS code, I used the following version from page 200 of book which stores parent
pointers, but modified for directed graphs:

CSE 40113: Algorithms Homework 7 Spring 2025

BreathFirstSearch(s):
put (0, s) in queue Q
while Q is not empty
take (p,v) from queue
if v is umarked
mark v
parent(v) < p
for each edge (v, w)
if (v, w) is unmarked
add (v,w) to Q

Proof of correctness: Based on the Maxflow-Mincut theorem from the textbook, f will
still be the maximum flow precisely if there are no paths in the residual network. If a path
does exist in G}, we know BFS will find the path, and by our claim above, we know the
overall flow will only one until of flow along that path, since otherwise we would exceed e’s
capacity.

Runtime: We change 1 edge weight, build a residual graph in O(V + E) time, and run
BFS in O(V + E) time. The if statement spends at most O(V') time tracing the path and
updating the flow values. So, total time is O(V + E).

