
CSE 40113: Algorithms Homework 6 Spring 2025

CSE 40113: Algorithms
Homework 6

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. For this problem, you’re doing to put yourself in the mindset of a network engineer, working
for a company that is facing a routing question. You have a connected graph G = (V,E),
where the nodes in V represent sites that wish to communicate with each other. Each edge
e is weighted with a bandwidth b(e), which is the maximum amount of information it can
transmit.

For every pair of nodes, the goal is to select a single path between the nodes along which
they can communicate. However, the rate of transfer is limited by the smallest edge on that
path, which we sometimes called the bottleneck edge: so for a path P , the bandwidth of the
path is equal to mine∈P b(e). (If there are no paths from s to t, then the bandwidth is −∞.)

One of the network designers has suggested that instead of storing a path for each pair
of vertices, you could instead store a single spanning tree such that the unique path between
vertices in the tree in fact achieves the largest possible bandwidth of any path. While skeptical,
after some attempts to prove your colleague incorrect, you must admit that this may in fact
be true.

(a) Prove that there is a spanning tree T such that, for every pair of vertices s and t in the
graph, the tree contains the maximum bandwidth path between s and t, and give an
algorithm to compute it.

Solution: We prove that it must be a tree first. If the set of such paths do not form
a tree, then they must be either disconnected or contain a cycle. If disconnected, then
we do not have a path for every pair of vertices, so that is easily ruled out. To see
that there is not a cycle: suppose for the purposes of contradiction that there is a
cycle in the union of all paths for every pair of vertex, and consider the edges on that
cycle. Assuming unique edge weights (or that we consistently break ties), there will
be some minimum edge. Every pair of vertices on the cycle has two possible paths in
the cycle, one containing the minimum edge and one which does not. Each such pair
will choose the path that avoids the minimum edge, though, since that path will have
a larger bottleneck. Therefore, the minimum weight edge on the cycle is not in any
communication path, and hence cannot be in the union of the paths.

In fact, we can prove that for any subset S ⊆ V , the largest bandwidth tree always
contains the maximum weight edge with exactly one endpoint in S. The proof is identical
to the one in the book on page 260: Fix a set S, and suppose not. Let e = {u, v} be
the largest edge. The maximum bandwidth tree T must have some other u to v path,
which must utilize some other edge e′ going from a vertex in S to a vertex outside of S.

1



CSE 40113: Algorithms Homework 6 Spring 2025

Remove e′ to get a forest with two components, and then readd e to get a new spanning
tree T − e′ + e. Since w(e) > w(e′) as it was the largest possible edge, our bottleneck
distance from u to v, as well as on any path that now uses e instead of e′, has only
gotten larger.

Note that this proof immediately suggests adapting a minimum spanning tree al-
gorithm to solve this bottleneck tree algorithm: in Kruskal’s algorithm on path 267,
instead of sorting by increasing weight, sort by decreasing weight instead. Then, inside
the loop, we let uv be the ith heaviest edge. Otherwise, the code is unchanged, and still
runs in O(E log V ) time.

(You could also have adapted Prim or Boruvka’s algorithm; I will accept any correct
algorithm for this problem.)

■

(b) Describe an algorithm to solve the following problem, as efficiently as possible: Given
an undirected weighted graph G, two vertices s and t, and a weight W , is the bottleneck
distance between s and t at most W?

Solution: For this problem, we can decide more quickly than running the algorithm
from part a. Instead, we can remove all edges with weight ≤ W . If s and t are still
connected, then we know there is a path connecting them with minimum edge weight
that is ≥ W , so the answer is no. If they are no longer connected, then every path
between them must have some edge that is weighted < W , so the answer is yes.

BottleneckBound(G = (V,E), s, t,W ):
for each vertex in v

for each edge e in v’s adjacency list
if w(e) < W

remove e from v’s adjacency list
mark all vertices as not visited
put s into a queue Q
while Q is not empty

remove v from Q
if v is unmarked

mark v
for each edge vw

add w to Q
if t is unmarked

return True
else

return False

Correctness follows immediately: if t is not marked in the BFS traversal, then all s
to t paths must use an edge of weight < W , so the bottleneck distance is < W . If t
is marked, there exists at least one s to t path found in the BFS traversal using edges
≥ W , so the bottleneck distance is not at most W .

Runtime: the first loop takes
∑
v∈V

d(v) time, which by the degree sum formula is

O(V +E), and the BFS traversal takes O(V +E) as well, as it is identical to the one in
Chapter 5. So, in total the algorithm takes O(V + E) time.

Note: Using part a to solve this is slower, and hence would not get full credit. You
also cannot loop over all edges and remove the edge from two adjacency lists in each

2



CSE 40113: Algorithms Homework 6 Spring 2025

iteration without taking O(V E) time total, since removing something from a list requires
finding it, taking O(V ) time each iteration.

■

2. Mulder and Scully have computed, for every road in the United States, the exact probability
that someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive
from Langley, Virginia to Area , Nevada. What route should he take so that he has the least
chance of being abducted?

More formally, you are given a directed graph G = (V,E), where every edge e has an
independent safety probability p(e). The safety of a path is the product of the safety prob-
abilities of its edges. Design and analyze an algorithm to determine the safest path from a
given start vertex s to a given target vertex t. You may assume that all necessary arithmetic
operations can be performed in O(1) time.

For example, with the probabilities shown above, if Mulder tries to drive directly from
Langley to Area 51, he has a 50% chance of getting there without being abducted. If he stops
in Memphis, he has a 0.7× 0.9 = 63% chance of arriving safely. If he stops first in Memphis
and then in Las Vegas, he has a 1−0.7×0.1×0.5 = 96.5% chance of being abducted! (That’s
how they got Elvis, you know.)

3



CSE 40113: Algorithms Homework 6 Spring 2025

Solution: This problem is asking you to modify Dijkstra. However, we can’t use Dijkstra
itself, as it minimizes the sum of edges, not the product. To solve it, you can either modify
the graph with new weights, or can redo Dijkstra to do multiplication and prove that this
correctly returns the safest path.

One solution is as follows: create G′ with the same vertex and edge set as G, but for each
edge e, re-weight the edge to be log(p(e)) instead of p(e). (This can be done in a simple for
loop over the edges.) Then, run Dijkstra (page 285) to get the shortest path from s to t in
G′, and return that path.

Correctness: Consider two paths P1 and P2 using edges from E. If P1 is shorter than P2

in G′, then P1 has a lower product of probabilities of edges along the path than P2.

Proof: If P1 is shorter, than
∑
e∈P1

log(p(e)) ≤
∑
e∈P2

log(p(e)). Using the identify that log a+

log b = log(ab), we can rewrite that inequality as
∏

e∈P1

log(p(e)) ≤
∏

e∈P2

log(p(e)), where
∏

denotes the product of each entry in the set (instead of sum of all the items in the set as in∑
). This means that the product of edge probabilities along P1 must be less than in P2, as

desired.

Therefore, if we find the shortest path in G′, this will also be the safest path in G.

Runtime: We convert edge weights in O(V + E) time, by looping over each vertex’s
adjacency list in G and creating G′ with new edge weights. We then call Dijkstra. Total run
time is O(V + E + E log V ).

■

3. After a grueling midterm, you are taking the bus home. Since you planned ahead, you
have a schedule that lists the times and locations of every stop of every bus in South Bend.
Unfortunately, no single bus will get you home, so you must change buses at least once.
There are exactly b different buses. Each one starts running at 12:01am, makes exactly n
stops throughout the day, and stops running at 11:50pm. Buses run exactly on schedule in
this theoretical version of South Bend, and you have a perfectly on time watch to plan with.
Finally, you are exhausted, so you don’t want to walk between bus stops at all.

(a) Describe and analyze an algorithm to determine the sequence of bus rides that get
you home as early as possible. You goal is to minimize arrival time, NOT time spent
traveling.

Solution: There are several different ways to approach this problem, all boiling down
to building a graph and running some version of Dijkstra. Here’s one option:

Build a graph G. First, create a vertex for each (bus, location, time) tuple on the
schedule. If you have b buses, each making n stops, this will give V = bn. Label each
vertex as its tuple.

Next, for all vertex pairs, we add an edge from (bi, lj , tk) to (bi′ , lj′ , tk′) of weight
tk′ − tk if:

• bi = bi′ and lj′ is the next stop on bi’s route after lj : this corresponds to riding on
the bus from one stop to the next

• lj = lj′ and tk < tk′ : this corresponds to waiting at a station for a later bus

4



CSE 40113: Algorithms Homework 6 Spring 2025

Finally, add extra vertices s and t. Add 0 edges connecting s to any vertex that
contains your starting location, weighted with the time difference between your test
ending and the bus arrival time at that vertex. Next, add weight 0 edges from any copy
of your home station to t.

This yields E ≤ (bn)2 edges, in the worst case.

Our algorithm will then just Dijkstra in O(ElogV ) = O((bn)2 log(bn)) time to find
the shortest s to t path, which we can turn into a schedule.

Claim (and proof of correctness for our reduction): any route home via the bus
schedule will correspond exactly to a s to t path in G, and the length of the path is the
amount of time spent returning home.

To prove the forward direction of claim: Consider a route home via the bus schedule,
which is a series of buses to catch. Each such bus ride traces a path in our graph as
follows: First, follow the edge from s to the vertex holding the station and bus arrival
time of the first bus on your route. Then, when you stay on a single bus for multiple
stops, you are following the first type of edges, and if you wait at the station for another
bus if you take the second type of edge. Finally, at your “home” station, you can take
the weight 0 edge to t. In all edges except the first and last, the weight of the edge is
labeled with time spent waiting or riding, so the length of the path is time spent getting
home.

For the other direction: consider any s to t path of length L in the graph. Such a
path must go from s to some initial (bus, station, time) tuple, and then follow edges that
correspond to either riding on a bus for multiple stops, or getting off at a station and
waiting for a different bus (the second type of edge), before finally arriving at t along
one final weight 0 edge. Since we have weighted the edges appropriately, the length of
this path is still our time spent.

■

(b) Things just got stranger! There are now zombies infesting the city. The transit authority
doesn’t have the funding to zombie-proof the bus stops (although you’re safe on a bus),
so your goal just changed. Describe and analyze an algorithm to determine a sequence
of bus rides that minimizes the total time you spend waiting at bus stops; you don’t care
how long you spend on a bus, or what time you get home. (Assume you can wait inside
the building for that first bus to arrive, so you’re safe for that waiting period - it’s all
the bus stops that are risky.)

Solution: For this problem, we can use an identical construction above, but the edges
(bi, lj , tk) to (bi′ , lj′ , tk′) where bi = bi′ and lj′ is the next stop on bi’s route after lj
(our first type of edge, which is riding on the bus) now are given weight 0. Things are
still non-negative, and paths will only pay for time spent on the “waiting” edges. The
runtime is unchanged, since we still run Dijkstra on the same graph, and the proof is
essentially identical to above. ■

Hint: for this problem, not that I am NOT giving you a graph. So, if you’re using any
graph algorithm, you’ll have to build the (presumably weighted) graph before you can use
any of the algorithms we have covered! In other words, you’re doing a reduction here, at least
if you’re using a graph algorithm (which I highly recommend).

5


