
CSE 40113: Algorithms Homework 3 Spring 2025

CSE 40113: Algorithms
Homework 3

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. You are a professional robber planning to rob houses along a street. Each house has a
certain amount of money stashed, which you are able to make an accurate estimate of based
on publicly available information on the internet. You need to decide which houses to rob,
where the only constraint stopping you from robbing each of them is that adjacent houses have
security systems connected and it will automatically contact the police if any three adjacent
houses were broken into on the same night. (You may assume all houses have positive values.)

(a) Give a (small) example of why choosing the largest value house first (in other words,
being greedy) will not necessarily yield the most money.

Solution: Consider 3 houses, where house 1 is worth 3, house 2 is worth 4, and house
3 is worth 3. A greedy choice of the largest would give a total value of 4, but if you rob
houses 1 and 3 instead, you could get a total value of 6.

■

(b) Write a recursive formula or expression for the maximum amount of money you can
gain.

Solution: Suppose the estimated value of each house is stored in an array H[1..n].
Let Opt(i) = the maximum amount of profit I can get for houses i through n. Our
backtracking recursion will be to consider house i, which could be included or skipped.
If you skip, you can just lookup Opt(i+1), since there is no constraint to skip anything.
If you take house i, your profit will increase by H[i], but you must skip either house i+1
or house i + 2. You can encode these possibilities recursively in several different ways,
all of which receive full credit - here is one example:

Opt(i) =

{
0 if i > n

max(Opt(i+ 1), H[i] +H[i+ 1] + Opt(i+ 3), H[i] + Opt(i+ 2)) otherwise

Of course, other recursive formulations of this problem are possible, and worth full
credit - for example, you could let Opt(i) be the maximum amount in houses 1 through
i, with i = 0 as the base case. Or, you could keep two arrays and store two values per
house, for with and without, and lookup appropriate values to ensure that if i is stolen
(the “with” value), only one of i+ 1 and i+ 2 can also be stolen.

■

1



CSE 40113: Algorithms Homework 3 Spring 2025

(c) Given an array Houses[1 . . . n], where Houses[i] is the amount of money estimated in the
ith house, design an algorithm to calculate the maximum amount of money you can rob
tonight without alerting the police.

Solution: We can turn our recursive formulation into a dynamic program by noting
that for each house, we need to store a single value Opt(i). We can fill from n down to
1, where each value i needs to look at the three later values, perform the appropriate
additions, and take a max. We get pseudocode as follows:

Rob(H[1..n])
Initialize an array Opt[1..n] with all 0’s
Opt[n]← H[n]
Opt[n− 1]← H[n− 1] +H[n]
Opt[n− 2]← maxOpt[n− 1], H[n− 2] +H[n− 1], H[n− 2] +H[n]
for i← n− 3 down to 1

Opt[i] = max
return Opt[1]

■

2. Since so few people came to last year’s holiday party, the president of Giggle decides to give
each employee a present instead this year. Specifically, each employee must receive on the
three gifts: (1) an all-expenses-paid sixweek vacation anywhere in the world, (2) an all-the-
pancakes-you-can-sort breakfast for two at Jumping Jack Flash’s Flapjack Stack Shack, or (3)
a burning paper bag full of dog poop. However, corporate regulations prohibit any employee
from receiving exactly the same gift as his/her direct supervisor. Any employee who receives
a better gift than his/her direct supervisor will almost certainly be fired in a fit of jealousy.
As Giggle’s social party czar, it’s your job to decide which gift each employee receives.

More formally, you are given a rooted tree T , representing the company hierarchy, stored
as a data structure where you have saved the root as T.root. For each node v in the tree,
there is a list of children saved in an array. You want to label the nodes of T with integers
1, 2, or 3, so that every node has a different label from its parent. The cost of an labeling is
the number of nodes with smaller labels than their parents.

See below for an example of such a tree, which has cost 9, where all fired employees are
shown in bold (since they have values lower than their direct supervisor.)

(a) Give a recursive formulation to calculate the minimum cost labeling rooted at a node v.
(Hint: take inspiration from section 3.10 here.)

2



CSE 40113: Algorithms Homework 3 Spring 2025

Solution: At each node, we can consider all possible labelings: 1, 2, or 3. For each,
we will have different constraints on the children, as they must be one of the two other
numbers, and some number can/will be fired as a result depending on number. So one
recursive formulation is the following:

For node v and label i, where i ∈ {1, 2, 3}, let Holiday(v, i) = the minimum number
of people that will be fired in the optimal labeling of the subtree rooted at v if v is given
label i. If v is a leaf, then Holiday(v, i) = 0 for all i = 1, 2, and 3.

Otherwise,

Holiday(v, 1) =
∑

w a child of v

min{Holiday(w, 2),Holiday(w, 3)}

Holiday(v, 2) =
∑

w a child of v

min{(1 + Holiday(w, 1)),Holiday(w, 3)}

Holiday(v, 3) =
∑

w a child of v

min{(1 + Holiday(w, 1)), (1 + Holiday(w, 2))}

Finally, the min cost labeling for node v is simply the minimum of Holiday(v, 1),
Holiday(v, 2), and Holiday(v, 3).

Correctness of this formula: Proof by induction on size of tree.

Base case: If v is a leaf, we correctly return 0 for all values i = 1, 2, 3.

Inductive Hypothesis: Assume our formulation for Holiday(v, 1), Holiday(v, 2), and
Holiday(v, 3). is correct for trees with < n vertices.

Inductive Step: Consider a tree with n vertices.

■

(b) Design and analyze an algorithm to compute the minimum-cost labeling of T , so that
the fewest number of people are fired. (Yes, you may send the president a flaming bag
of dog poop.)

Solution: Our recursive formulation will be built from our recurrence (so yours may
look different if you had a slightly different recursive formulation!). Here, I’ll chose to
store 3 values at every node v: v.label1 will store the minimum number fired assuming v
gets label 1, v.label2 the minimum if v gets label 2, and v.label3 the minimum if labeled
3. We can fill these in at a leaf easily based on our recursive formulation, and for every
node v, we can calculate the 3 values needed assuming all child values are already filled
in in time proportional to the number of children, since we do a total of 6 lookups in
order to fill in our 3 values in the recursion above.

We will calculate the values in a postorder traversal, so that children are calculated
before the parent:

Holiday(v)
v.label1 ← 0
v.label2 ← 0
v.label3 ← 0
for each child w of v

v.label1 + = min{ w.label2, w.label3 }
v.label2 + = min{1+ w.label1, w.label3 }
v.label3 + = min{1+ w.label1, 1+w.label2 }

return min{ v.label1, v.label2, v.label3 }

3



CSE 40113: Algorithms Homework 3 Spring 2025

Our “main” function would then just call Holiday(root).

Runtime: This is a postorder traversal, which takes O(n) time total, as the time
spent at each node is proportional to the number of children. If we have n nodes total,
this will take a total of O(n) time; even though the time spent at a given node is not
constant, each node is only the child of one parent, so in total we still get O(n) lookups
across the entire algorithm.

■

3. Recall that a subsequence of an array is a subset of the elements in the array in the same
order. (So: a subset in the same order, but they don’t have to be next to each other in the
array.) For example, 1, 1 5 3, and 2 1 9 5 8 7 2 6 5 3 are all subsequences of A = [2 1 9 5 8 7
2 6 5 3 ], where each A[i] is a single digit.

A sequence X[1..n] is called oscillating if X[i] < X[i+1] for all even i, and X[i] > X[i+1]
for all odd i. Describe an efficient algorithm to compute the length of the longest oscillating
subsequence of an arbitrary array A of integers.

4



CSE 40113: Algorithms Homework 3 Spring 2025

Solution: There were two ways to approach this, both akin to the Longest Increasing Sub-
sequence problem. Since we want an oscillating sequence, we don’t just need to remember
the previous element chosen, but also need to know if the next element should be larger or
smaller than the previous. So, one recursive formulation is to let LOS-up(i, j) be the longest
oscillating sequence in A[j..n], where A[i] was the last element in the subsequence and the
next value should increase, and LOS-down(i, j) be the longest oscillating sequence in A[j..n],
where A[i] was the last element in the subsequence and the next value should decrease. Then,
we can choose to match (in which case you switch to the other version of LOS, since you want
to go the opposite way in the next term), or we don’t, and choose the best of the two:

LOS-up(i, j) =


0 if j > n

LOS-up(i, j + 1) if A[i] ≥ A[j]

max(LOS-up(i, j + 1), 1 + LOS-down(j, j + 1)) otherwise

LOS-down(i, j) =


0 if j > n

LOS-down(i, j + 1) if A[i] ≤ A[j]

max(LOS-down(i, j + 1), 1 + LOS-up(j, j + 1)) otherwise

This means we will need to store our entries in two O(n2) tables:

LongestOscillatingSubsequence(A[1..n]):
A[0]← −∞
for i← 1 to nLOS-up[i, n+ 1]← 0

LOS-down[i, n+ 1]← 0
for j ← n down to 1

for i← 0 to j
if A[i] ≥ A[j]

LOS-up[i, j]← LOS-up[i, j + 1]
else

LOS-up[i, j]← max(LOS-up[i, j + 1], 1+ LOS-down[i, j + 1])
if A[i] ≤ A[j]

LOS-down[i, j]← LOS-down[i, j + 1]
else

LOS-down[i, j]← max(LOS-down[i, j + 1], 1+ LOS-up[i, j + 1])
return LOS-up[0, 1]

Correctness of the recursion (and algorithm): induction on j

Base case: we correctly calculate 0 if there is no sequence left (j > n), no matter the value
of i and no matter if we’re in LOS-up or LOS-down.

Inductive hypothesis: Assume the algorithm works correctly for LOS-up(i, j + 1) and
LOS-down(i, j + 1), calculating correct the longest increasing subsequence where A[i] is the
last element included, and we need the next element to go either up or down (respectively).
Now consider LOS-up(i, j) and LOS-down(i, j) for any i. In either recurrence, we try both
including the element at A[j] and not including it, assuming A[j] is appropriately larger or
smaller than the previously chosen element (based on which recurrence it is in). If we include,

5



CSE 40113: Algorithms Homework 3 Spring 2025

then the recursion needs to switch to the other recurrence, as the next element oscillates in the
other direction. Since we try all possibilities with regards to A[j] and the inductive hypothesis
says that we can compute the correct answer for j+1 calls, we will generate the correct value.

In the end, we return LOS-up[0, 1], as that stores the length of the longest oscillating
sequence in A[1..n], so we ensure the first element chosen for the subset is larger than the
second.

Runtime and Space: We have two n × n tables, so our space is O(n2). The nested loop
takes O(n2) time, since each iteration fills in a cell entry of each table in O(1) time.

■

6



CSE 40113: Algorithms Homework 3 Spring 2025

4. Sample Solved Problem: A shuffle of two strings X and Y is formed by interspersing the
characters into a new string, keeping the characters of X and Y in the same order. For
example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS
in several different ways:
BANANAANANAS, BANANAANANAS, or BANANANANAS.

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING
are both shuffles of DYNAMIC and PROGRAMMING:
PRODGYRNAM AMMIINCG and DYPRONGARMAMMICING.

Given three strings A[1..m], B[1..n], and C[1..m+ n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution:

Recursive formulation: We define a boolean function Shuf(i, j), which is True if and
only if the prefix C[1..i + j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function
satisfies the following recurrence:

• Shuf(i, j) = true if i = j = 0

• Shuf(0, j − 1) AND (B[j] = C[j]) if i = 0 and j > 0

• Shuf(i− 1, 0) AND (A[i] = C[i]) if i > 0 and j = 0

• (Shuf(i− 1, j) AND (A[i] = C[i+ j])) OR (Shuf(i, j− 1) AND (B[j] = C[i+ j])) if i > 0
and j > 0

The proof that this formulation is correct can be shown via induction: if you’re considering
the i + jth character of C, it must be from either A[i] or B[j]. We are trying both options,
and returning true if either works. The base cases handle either A or B being empty, in which
case either we’ve matched everything (and both are 0) or we must exactly match the rest of
C to which ever string is left.

Dynamic programming: We need to compute Shuf(m, n); if it is true, then we can shuffle
the entire strings A and B into a string C. Since Shuf[i,j] needs to look up values Shuf[i-1,j]
and Shuf[i,j-1] (as well as comparing some values from the 3 arrays), we can memoize all
values into a two-dimensional array Shuf[0..m][0..n]. Each array entry Shuf[i, j] depends only
on the entries immediately below and immediately to the right: Shuf[i-1, j] and Shuf[i, j-1].
Thus, we can fill the array in standard row-major order.

7



CSE 40113: Algorithms Homework 3 Spring 2025

The algorithm runs in O(mn) time, and (if we keep the entire 2d arrays) takes the same
amount of space.

Note that this can be improved to O(m) (or O(n)) by keeping only two rows: the one we
are currently filling in, and the row immediately preceding it.

8


