
CSE 40113: Algorithms Homework 2 Spring 2025

CSE 40113: Algorithms
Homework 2

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Describe recursive algorithms for the following generalizations of subset sum:

(a) Given an array of positive integers X[1..n] and an integer T , compute the number of
subsets of T whose elements sum to T .

(b) Given two arrays X[1..n] and W [1..n] of positive integers with an integer T , where each
W [i] represents the weight of the element X[i], compute the maximum weight subset of
X whose elements sum to T . If no such subset exists, your algorithm should return −∞.

Do NOT analyze or optimize your algorithm’s run time after writing the recurrence to
describe it; a correct algorithm whose running time is exponential in n is all that I’m requiring
for full credit. (You do need to do a proof of correctness and pseudocode, though, as well as
writing a recurrence down for the algorithm.)

2. An addition chain for an integer n is an increasing sequence of integers that start with 1 and
end with n, such that each entry after the second is the sum of two earlier entries.

More formally, a sequence x0 < x1 < . . . < xl is an addition chain for n if and only if:

• x0 = 1

• xl = n

• for every index k ≥ 1, there are two smaller indices i ≤ j < k such that xk = xi + xj

We say the length of such an addition chain is l (since we don’t bother to count the first
element). For example: < 1, 2, 3, 5, 10, 20, 23, 46, 92, 184, 187, 374 > is an addition chain for
374 of length 11.

Describe a recursive backtracking algorithm to compute a minimum length addition chain
for a given positive integer n. Again, do NOT analyze or optimize your algorithm’s run
time after writing the recurrence to describe it; a correct algorithm whose running time is
exponential in n is all that I’m requiring for full credit.

3. Consider two arrays X[1..k] and Y [1..n], where k ≤ n. Describe a recursive backtracking
algorithm to decide if X a subsequence of Y . For example, the string PPAP is a subsequence
of PENPINEAPPLEAPPLEPEN.

Again, no need to analyze or optimize your algorithm’s run time after writing the recur-
rence to describe it; a correct algorithm whose running time is exponential in n and/or k is
all that I’m requiring for full credit.

1



CSE 40113: Algorithms Homework 2 Spring 2025

4. Sample Solved Problem: A shuffle of two strings X and Y is formed by interspersing the
characters into a new string, keeping the characters of X and Y in the same order. For
example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS
in several different ways:
BANANAANANAS, BANANAANANAS, or BANANANANAS.

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING
are both shuffles of DYNAMIC and PROGRAMMING:
PRODGYRNAM AMMIINCG and DYPRONGARMAMMICING.

Given three strings A[1..m], B[1..n], and C[1..m+ n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution:

Recursive formulation: We define a recursive function Shuf(i, j), which is True if and
only if the prefix C[1..i + j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function
satisfies the following recurrence:

• Shuf(i, j) = true if i = j = 0

• Shuf(0, j − 1) AND (B[j] = C[j]) if i = 0 and j > 0

• Shuf(i− 1, 0) AND (A[i] = C[i]) if i > 0 and j = 0

• (Shuf(i− 1, j) AND (A[i] = C[i+ j])) OR (Shuf(i, j− 1) AND (B[j] = C[i+ j])) if i > 0
and j > 0

The proof that this formulation is correct can be shown via induction: if you’re considering
the (i+j)th character of C, it must be from either A[i] or B[j], since the entire prefix A[1..i] and
B[1..j] must be included. We are trying both options, and returning true if either works. The
base cases handle either A or B being empty, in which case either we’ve matched everything
(and both are 0) or we must exactly match the rest of C to which ever string is left.

This immediately yields a recursive algorithm, where you’ll start with A[1..m], B[1..n],
and C[1..(m+ n)]. At each level, you’ll check the indices in O(1) time, and make either 1 or
2 recursive calls - one in two of the bases cases, but two call if i > 0 and j > 0.

At a high level, we note that this is exponential, since each call does O(1) work comparing,
and then in the worst case makes two recursive calls with inputs that are 1 character smaller
(in either A or B, as well as in C). So, this is a Hanoi-like recursive algorithm, and will take
exponential time.

In case you’re curious, we can formalize this by letting k = m+n, which is the size of the
input. We can write the runtime as T (k) ≤ 2T (k− 1) +O(1), since k reduces by 1 each time
in the recursion, yielding T (k) = O(2k) = O(2m+n). (Note that I would not require this last
part in your homework.)

2


