
CSE 40113: Algorithms Homework 2 Spring 2025

CSE 40113: Algorithms
Homework 2

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Describe recursive algorithms for the following generalizations of subset sum:

(a) Given an array of positive integers X[1..n] and an integer T , compute the number of
subsets of X whose elements sum to T .

Solution: This can actually be solved by a simple modification to the algorithm on
page 78 of the textbook. In the base case if T = 0, return 1. In the base case where
i = 0 or T < 0, return 0 (since you have not found a subset). Finally, calculate with and
without as shown, but then return with + without in the last line.

Runtime: Unchanged from the book, so still T (n) ≤ 2T (n− 1) +O(1) = Θ(2n).

Correctness: Induction on n, the size of the array:

Base case: If T = 0, you have one subset that works (the empty set), so return 1.
If T < 0 or (n = 0 and T ̸= 0), you have failed, so you find 0 subsets in this recursive
structure.

Inductive Hypothesis: Assume the recursion fairy can solve correctly on sets of size
n− 1.

Inductive step: Either X[n] is in some subsets, or it is not. Try both: count the
number of subsets that include X[n], which means you’d have a subset of X[1..n − 1]
that sums to T −X[n], which the by the induction hypothesis you can compute correctly
in the recursive call to compute with. Then count the number that don’t include X[n],
which means you have a subset of X[1..n− 1] that sums to T , which again we compute
correctly by the inductive hypothesis. Since these are disjoint sets, we can use the rule
of sum and add the result together, and this must be the number of subsets of X[1..n]
that sum to T . ■

(b) Given two arrays X[1..n] and W [1..n] of positive integers with an integer T , where each
W [i] represents the weight of the element X[i], compute the maximum weight subset
of X whose elements sum to T . Your algorithm should return just the weight of this
maximum subset, and if no such subset exists, your algorithm should return −∞.

Solution: Again, we modify the helper function from the book slightly, so that it also
include the weight array W . We will define the recursive function as follows, where we
return the value of the Max Weight Subset summing to T in X[i..n], given inputs X and
i, as well as W and T :
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MaxWeightSubsetSum(X,W, i, T ):
if T = 0

return 0
else if T < 0 or i = 0

return −∞
else

with ← W[i] + MaxWeightSubsetSum(X,W, i+ 1, T −X[i])
without ← MaxWeightSubsetSum(X,W, i+ 1, T )
return max(with,without)

Note that this does assume that −∞ plus any other number is still −∞; if necessary
we can add an if statement to track this condition separately.

Correctness: Induction on the size of the array, n: Base case: If T = 0, the maximum
subset has weight 0, with 0 items included. If T < 0 or (n = 0 and T ̸= 0), you have
failed, so we correctly return −∞.

Inductive Hypothesis: Assume the algorithm works for inputs ≤ n− 1.

Inductive Step: Consider an input of size n. The maximum weight subset will either
include A[n] or will not; our algorithm tries both possibilities and recurses on a smaller
array, so by the inductive hypothesis we know that those calls return the correct answer
for the smaller array; we then return the larger, which must be the maximum weight
subset.

Runtime: Same as the original algorithm and part (a), as we are still doing a constant
amount of work in the function (just now additions instead of boolean operations) and
recursing at most twice.

■

Do NOT analyze or optimize your algorithm’s run time after writing the recurrence to
describe it; a correct algorithm whose running time is exponential in n is all that I’m requiring
for full credit. (You do need to do a proof of correctness and pseudocode, though, as well as
writing a recurrence down for the algorithm.)

2. An addition chain for an integer n is an increasing sequence of integers that start with 1 and
end with n, such that each entry after the second is the sum of two earlier entries.

More formally, a sequence x0 < x1 < . . . < xl is an addition chain for n if and only if:

• x0 = 1

• xl = n

• for every index k ≥ 1, there are two smaller indices i ≤ j < k such that xk = xi + xj

We say the length of such an addition chain is l (since we don’t bother to count the first
element). For example: < 1, 2, 3, 5, 10, 20, 23, 46, 92, 184, 187, 374 > is an addition chain for
374 of length 11.

Describe a recursive backtracking algorithm to compute a minimum length addition chain
for a given positive integer n. Again, do NOT analyze or optimize your algorithm’s run
time after writing the recurrence to describe it; a correct algorithm whose running time is
exponential in n is all that I’m requiring for full credit.

2



CSE 40113: Algorithms Homework 2 Spring 2025

Solution: This recursion can be formalize either way, but I felt the most natural was “back-
wards”: We know the last element must equal n, and the first must equal 1. The second
element x1 must equal 2, since that is the only way to generate a sum from two smaller index
elements. For an arbitrary index i, consider a partially generated chain x0, x1, . . . , xi. We
generate all possible “next” elements by summing every possible pair of earlier elements, re-
cursing on a larger addition chain, and keep the largest, which we then return. The recursion
will terminate when we reach a value xi = n, when we return the length i of the chain.

AddChain(n):
if n = 1

return 1
initialize an array X
X[0]← 1
X[1]← 2
AChelper(X,n)

AChelper(X[1..k], n):
if A[k] = n

return k
best ←∞
for i← 1 to k

for j ← 1 to k
next ← A[i] +A[j]
if next > A[k]

append next to X
best ← min(best, AChelper(X,n))
remove last element from X

return best

Runtime: this algorithm makes a quadratic number of recursive calls per level, and (since
1 and 2 are in the chain) at least two of them are as large as the Fibonacci recurrence. As
such, this is VERY exponential.

Correctness of AChelper, by induction on x = n−A[k], the “gap” between our last element
and target value n:

Base case: if A[k] = n (so x = 0), our algorithm correctly returns k, the length of our
chain.

Inductive hypothesis: if n− A[k] < x, assume the algorithm will correctly determine the
right answer.

Inductive step: Consider x = n − A[k]. Our algorithm tries every possible next term
in the sequence, by iterating over the sum of any two numbers already there. For each, we
appending it to the list, and recursing with that value as A[k+1]. Since every A[k+1] > A[k],
we get n−A[k+1] < n−A[k] = x, so by our inductive hypothesis, the algorithm can correctly
determine the best possible remainder of the addition chain. Our own sequence must have
some number next, and since we are generating and trying every possibility and updating the
smallest accordingly, we will find the best one in this search and return it.

Runtime: This algorithm makes k2 recursive calls. It is worth nothing that at least one
is generated by adding A[k] + 1, so it is only 1 larger (or x, our gap, is only one smaller),
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and another will be adding A[k] + 2, since we know 1 and 2 are in every addition chain at
position 0 and 1. That means this is worse than the Fibonacci recurrence, as those are only
two of the of the k2 calls, so this is very very exponential.

■

3. Consider two arrays X[1..k] and Y [1..n], where k ≤ n. Describe a recursive backtracking
algorithm to decide if X a subsequence of Y . For example, the string PPAP is a subsequence
of PENPINEAPPLEAPPLEPEN.

Again, no need to analyze or optimize your algorithm’s run time after writing the recur-
rence to describe it; a correct algorithm whose running time is exponential in n and/or k is
all that I’m requiring for full credit.

Solution: Let’s try backtracking: if X[k] = Y [n] we can match X[k] to Y [n] or not, and
make two recursive calls to try to match X[1...k − 1] to Y [1..n − 1] in one and X[1...k] to
Y [1..n− 1] in the other. We return true if either works. If X[k] ̸= Y [n] , then we can recurse
and try to match X[1...k] to Y [1..n−1], since X[k] can’t find a match yet. Our base cases are
if either X or Y is ever empty - if k = 0, then we’ve matched all of the subsequence, and if
n = 0 when k is still positive, then we’ve failed to match. This yields the following solution:

Subsequence(X[1..k], Y [1..n]):
if k = 0

return true
if n = 0

return false
if X[k] = Y [n]

return Subsequence(X[1..k − 1], Y [1..n− 1]) or Subsequence(X[1..k], Y [1..n− 1])
else

return Subsequence(X[1..k], Y [1..n− 1])

Proof of correctness: Induction on n. If n = 0 and k = 0, we will return true, as the
empty subsequence is a subset of any other. If k ≥ 1 and n = 0, we will correctly fail because
a positive length subsequence cannot be found in an empty sequence.

Inductive hypothesis: assume the algorithm works correctly on inputs where Y is of length
n− 1 or less.

Inductive step: Consider an input of size n. We consider the last element in Y : Either it
matches to the last element of X, or it does not. We try both options, and recurse at most
twice on a prefix of Y of length n−1, so by our induction hypothesis those calls are answered
correctly. Since we try both options, if X is a prefix, one of these two calls much find it.

Runtime: In the worst case, this takes an input where Y has length n and makes two
recursive calls where Y has length n − 1, so the recurrence can be written as: T (n) ≤
2T (n− 1) +O(1), which gives exponential time in the worst case: T (n) = O(2n), as it is the
same recurrence as subset sum.

■
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4. Sample Solved Problem: A shuffle of two strings X and Y is formed by interspersing the
characters into a new string, keeping the characters of X and Y in the same order. For
example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS
in several different ways:
BANANAANANAS, BANANAANANAS, or BANANANANAS.

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING
are both shuffles of DYNAMIC and PROGRAMMING:
PRODGYRNAM AMMIINCG and DYPRONGARMAMMICING.

Given three strings A[1..m], B[1..n], and C[1..m+ n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution:

Recursive formulation: We define a recursive function Shuf(i, j), which is True if and
only if the prefix C[1..i + j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function
satisfies the following recurrence:

• Shuf(i, j) = true if i = j = 0

• Shuf(0, j − 1) AND (B[j] = C[j]) if i = 0 and j > 0

• Shuf(i− 1, 0) AND (A[i] = C[i]) if i > 0 and j = 0

• (Shuf(i− 1, j) AND (A[i] = C[i+ j])) OR (Shuf(i, j− 1) AND (B[j] = C[i+ j])) if i > 0
and j > 0

The proof that this formulation is correct can be shown via induction: if you’re considering
the (i+j)th character of C, it must be from either A[i] or B[j], since the entire prefix A[1..i] and
B[1..j] must be included. We are trying both options, and returning true if either works. The
base cases handle either A or B being empty, in which case either we’ve matched everything
(and both are 0) or we must exactly match the rest of C to which ever string is left.

This immediately yields a recursive algorithm, where you’ll start with A[1..m], B[1..n],
and C[1..(m+ n)]. At each level, you’ll check the indices in O(1) time, and make either 1 or
2 recursive calls - one in two of the bases cases, but two call if i > 0 and j > 0.

At a high level, we note that this is exponential, since each call does O(1) work comparing,
and then in the worst case makes two recursive calls with inputs that are 1 character smaller
(in either A or B, as well as in C). So, this is a Hanoi-like recursive algorithm, and will take
exponential time.

In case you’re curious, we can formalize this by letting k = m+n, which is the size of the
input. We can write the runtime as T (k) ≤ 2T (k− 1) +O(1), since k reduces by 1 each time
in the recursion, yielding T (k) = O(2k) = O(2m+n). (Note that I would not require this last
part in your homework.)
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