
CSE 40113: Algorithms Homework 1 Spring 2025

CSE 40113: Algorithms
Homework 1

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but it’s a good idea to work through these for practice. Assume
reasonable but nontrivial base cases if none are supplied. More exact solutions are better.

(a) A(n) = 4A(n/3) + n2

(b) B(n) = 3B(3n/5) + n

(c) C(n) = 2C(n/2) + n log n

(d) D(n) = 4D(n− 1) + 2

(e) E(n) = 3E(⌊n/3⌋+ 3) + 100n3 − 6n

2. Suppose you are given a sorted array of n distinct numbers that has been rotated k steps, for
some unknown integer k between 1 and n− 1. That is, you are given an array A[1 . . . n] such
that some prefix A[1 . . . k] is sorted in increasing order, the corresponding suffix A[k+1 . . . n]
is sorted in increasing order, and A[n] < A[1]. For example, you might be given the following
16-element array (where k = 10):

9 13 16 18 19 23 28 31 37 42 1 3 4 5 7 8

(a) Describe and analyze an algorithm to compute the unknown integer k.

(b) Describe and analyze an algorithm to determine if the given array contains a given
number x.

1



CSE 40113: Algorithms Homework 1 Spring 2025

3. Let T be a binary tree with n vertices. Deleting any vertex v splits T into at most three
subtrees, containing the left child of v (if any), the right child of v (if any), and the parent of
v (if any). We call v a central vertex if each of these smaller trees has at most n/2 vertices.
See below for a 34 node binary trees, where deleting the central vertex leaves 3 subtrees, with
14, 7, and 12 nodes each.

Describe and analyze an algorithm to find a central vertex in an arbitrary given binary
tree. [Hint: It might be helpful to first prove that every tree has a central vertex, then chase
it down - recursively, if at all possible!]

2



CSE 40113: Algorithms Homework 1 Spring 2025

4. Sample solved problem:

You are interested in analyzing some hard-to-obtain data from two separate databases,
which I’ll call A and B. Each database contains n numerical values, so that there are 2n
total, and you may assume that no two are the same. You’d like to determine the median
value of this set of 2n values, which we define to be the nth value.

However, the situation is complicated by the fact that you can only access these values
through queries to the databases. In a single query, you can specify a value k to one of the
two databases, and the chosen database will return the kth smallest value that it contains.
Since queries are expensive, you would like to compute the median using as few queries as
possible.

Given an algorithm that finds the median value using at most O(log n) queries. Be sure to
specify the algorithm, the analysis for the number of queries, and a justification (i.e. a proof)
that your algorithm returns the median value. (To keep things simpler, you are welcome to
assume that n is a power of 2.)

Solution:

I’ll index the elements of each database from 1 to n, so that query(A, i) looks up the ith

entry in the database A. Suppose we first query each database for its median—that is, we
query each one for element n/2. Let m1 be the median from database 1 and let m2 be the
median from database 2. Suppose, without loss of generality, that m1 < m2. We know that
n/2 elements in database 1 are less than or equal to m1, and therefore must also be less than
m2. (We don’t yet know how the remaining n/2 elements in database 1 are ordered with
respect to m2). Similarly, we know that n/2 elements in database 2 are greater than m2

and therefore also greater than m1 (but we don’t know how the remaining n/2 elements in
database 2 are ordered with respect to m1.

At this point, we can conclude something: the median of all 2n elements must be in the
largest half of database 1, or in the smallest half of database 2. At this point, we can chop of
databases in half, and recurse!

Pseudocode:

FindMedian(A, amin, amax, B, bmin, bmax):
if amax == amin

ma ← query(A, 1)
mb ← query(B, q)
return min(ma,mb)

ma ← query(A, (amax + amin − 1)/2)
mb ← query(B, (bmax + bmin − 1)/2)
if ma < mb

return FindMedian(A,ma + 1, amax, B, bmin,mb)
else

return FindMedian(A, amin,ma, B,mb + 1, bmax)

Our initial call is then to FindMedian(A, 1, n,B, 1, n); from there on out, amin and amax

(as well as the similar values in B) represent the subdatabase that we are working with in
that recursive call.

Proof of correctness: Induction on n:

Base case: There is a single element in each database, so the median is (by definition) the
smaller of the two. This is done in the first if statement of our pseudocode.

3



CSE 40113: Algorithms Homework 1 Spring 2025

Inductive Hypothesis: For any value ≤ n, our algorithm correctly returns the median of
all elements in the two databases.

Inductive Step: Consider a database of 2n elements. We first find the two medians, ma

and m2. As described above, if we have ma < mb, then elements in the first half of database
A are less than both medians, and elements in the second half of database B are greater
than both. Since there are n/2 elements in each of these halves, we know that the overall
median cannot be in those sections: if it were, we would have a contradiction, because there
are n + 1 elements greater than ma, and n + 1 elements less than mb. Since the median is
the nth smallest, this is impossible.

Since we discard the same number of elements from A and B, the median overall will be
equal to the median of the smaller databases of size n each. By our inductive hypothesis, our
algorithm will correctly find the median of these smaller databases, and thus will return the
overall correct value.

Runtime: Our base case makes two queries and a comparison, which is total time O(1).

We then can construct the recurrence as follows: Our pseudocode makes 2 queries, then
does a comparison, then calculates two additions and two divisions, before making a recursive
call on a database which is half as big. The resulting recurrence is

T (n) = T (n/2) +O(1)

Plugging into Master theorem, we get T (n) = Θ(log n).

4


