
CSE 40113: Algorithms Homework 1 Spring 2025

CSE 40113: Algorithms
Homework 1

You may complete this homework in groups of 3 or less students. Note that the integrity policy
applies: your group should write up your own work, although you’re welcome to work on the
problems in a larger group. If you have any questions, please re-read both the homework guidelines
and the academic integrity policy carefully, and then come discuss any questions or concerns with
me.

Required Problems

1. Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but it’s a good idea to work through these for practice. Assume
reasonable but nontrivial base cases if none are supplied. More exact solutions are better.

(a) A(n) = 4A(n/3) + n2

Solution: We can use Master theorem or recursion trees here. If you use Master The-
orem, then a = 4, b = 3, and f(n) = O(n2), so d = 2. Since comparing a and bd gives
4 < 32 = 9, we have A(n) = Θ(n2). ■

(b) B(n) = 3B(3n/5) + n

Solution: Using the version of Master theorem from lecture: Here, a = 3, b = 5/3
(since 3n/5 = n/(5/3)), and f(n) = O(n), so d = 1 . Since comparing a and bd gives
3 > (5/3)1, we have B(n) = Θ(nlog5/3 3). ■

(c) C(n) = 2C(n/2) + n log n

Solution: Here, f(n) = O(n log n), which is not a polynomial. However, we can still
use the version of Master theorem from lecture, or we can do recursion trees. I’ll go
with trees: The root (or level 0) of the recursion tree holds the value n log n. There are
2 recursive calls of size n/2, so the two nodes on level 1 hold n/2 log(n/2) each. The
next level down has 4 nodes, and each holds n/4 log(n/4). Continuing the pattern: level
i has 2i nodes, and the work in each node is n/2i log(n/2i). Since we divide by 2 each
time, the overall depth of the tree is log2 n.

We turn this into a sum:

C(n) =

log2 n∑
i=0

(2i)(n/2i log(n/2i))

=

log2 n∑
i=0

(n/2 log(n/2i))

= n · (
log2 n∑
i=0

log(n/2i))
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Using a logarithm identity that log(a/b) = log a − log b, we simplify the summation

further:
log2 n∑
i=0

log2(n/2
i)) =

log2 n∑
i=0

(log2 n − log2(2
i)), and since log 2i = i for i ranging

from 0 to log2 n, this is just adding 1 + 2 + 3 + . . . log2 n =
∑log2 n

i=0 i. Plugging into our
identity, this gives (log2 n)(log2 n+ 1)/2 total.

Plugging this back into our summation and simplifying, the final answer is C(n) =
Theta(n(log n)2). ■

(d) D(n) = 4D(n− 1) + 2

Solution: This one is not divide and conquer, so you need to go back to linear inho-
mogenous recurrences to solve, or else unplug the recurrence to see the patter. Using
the characteristic equation method, for example, we get that the characteristic equation
is x− 4, and since the inhomogeneous terms is a constant, D(n) = Θ(4n). ■

(e) E(n) = 3E(⌊n/3⌋+ 3) + 100n3 − 6n

Solution: ■

We can ignore floors and ceilings, as well as lower order terms of a polynomial. So here,
using Master theorem, a = 3, b = 3, and f(n) = Θ(n3) so d = 3. Then, a = 3 < bd = 9,
so we get E(n) = Θ(n3).

2. Suppose you are given a sorted array of n distinct numbers that has been rotated k steps, for
some unknown integer k between 1 and n− 1. That is, you are given an array A[1 . . . n] such
that some prefix A[1 . . . k] is sorted in increasing order, the corresponding suffix A[k+1 . . . n]
is sorted in increasing order, and A[n] < A[1]. For example, you might be given the following
16-element array (where k = 10):

9 13 16 18 19 23 28 31 37 42 1 3 4 5 7 8

(a) Describe and analyze an algorithm to compute the unknown integer k.
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Solution: We solve this via a variant of binary search. However, instead of comparing
a value against the middle element, we compare it to the next smallest value to see if
it is the rotation. If not, we will check the first, middle, and last element. If A[1] <
A[m] < A[n] (where m = n

2 ), then it is sorted and there was no rotation. If A[1] < A[m]
and A[m] > A[n], then we know the first half is in fact in sorted order, so the rotation
number k must be greater than m = n/2. If not, then we must have A[1] > A[m], and
the rotation number k must be on less than m = n/2. In any case, we can recurse on
just one side, and the half we recurse on satisfies the same property of being a rotated
sorted list.

This gives the following algorithm, where I assume the array A is globally accessible,
and our initial call is to FindRotation(1, n):

FindRotation(low,high):
if low = high

return low
m ← ⌊(low−high)/2⌋
if m > 0 and A[m] < A[m− 1]

return m
if A[m] > A[high]

return FindRotation(m+ 1,high)
else

return FindRotation(low,m)

(Note that you could also pass in A as in input parameter, if you prefer.)

Alternatively, you can code this using a while look that does the same recursion
iteratively:

FindRotation(A[1..n]):
low ← 0, high ← n
while low < high

m ← ⌊(low−high)/2⌋
if m > 0 and A[m] < A[m− 1]

return m
if A[m] > A[high]low ← m+ 1
else

high ← m− 1
return low

The runtime is analogous to binary search, as in each iteration of the loop, we reduce
the size by 1/2. That means the loop runs at most log2 n times. In each iteration, it
does O(1) work to compare as well as to do calculations and updates. In total, this
means the runtime is O(log2 n).

Note that this can also be phrased recursively - I’ve done it this way to match ways
you have seen it before (hopefully).

Proof of correctness: Induction on the size of array, which I’ll say is high − low
(following our code).

Base case: If low = high, then we correctly exist the loop and return the value. Since
it is the only value left to consider, it must be the rotation index.

Inductive Hypothesis: The algorithms works correctly for arrays of size less than n.

Consider an array of size n. Since k (the index of rotation) exists, we know if m is
the value for k, we will return it correctly in the first if statement of the loop. If it is not,
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then it must lie in either the first or second half, and we can detect this by comparing
A[m] to the first and last elements. Since it is rotated, only one pair is in sorted order,
and the inversion must be in the other half. We reset our loop boundaries appropriately
to search that half, and by our inductive hypothesis, we know that the algorithm works
correctly as the array has gotten smaller by a factor of 2, and so low − high will be < n.

■

(b) Describe and analyze an algorithm to determine if the given array contains a given
number x.

Solution: My solution will use part (a), as well as binary search, which I have coded
as follows (and again assuming a global array A, although you could also pass it as an
input parameter):

BinarySearch(x,low,high):
if low > high

return -1
m ← ⌊(low−high)/2⌋
if A[m] = k

return m
if A[m] < x]

return BinarySearch(m+ 1,high)
else

return BinarySearch(low,m-1)

Then, our solution is as follows, again assuming a globally accessible array A (or
otherwise just add A as an additional input parameter in every call) as well as a target
value x:

SearchRotated(A[1..n],x):
k ← FindRotation(1,n)
l← BinarySearch(x,1,k-1)
r ← BinarySearch(x,k,n)
if l ̸= −1

return l
else if r ̸= −1

return r
else

return -1

The runtime is O(log n) total, as part (a) takes O(log n) time as well as two calls to
binary search, which my discrete math/data structures book has already studied.

Correctness: If the algorithm from part a is correct, we have the value k such that
both A[1..k − 1] and A[k..n] are sorted. I can cite my discrete math or data structure
text again for why binary search will work in a sorted array. If the value is present, it
must be in one of the two sorted sections, so my code will find it.

Note that we could modify binary search directly to search in a rotated array, or
(equivalently) modify our algorithm from part a to search as it recurses, if that is prefer-
able. In this case, you’d prove correctness via induction, and the runtime would be the
same recurrence as part (a) or as binary search, just with a few extra comparisons. Here
is the code:
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SearchRotated(A[0..n− 1], x)
left ← 0
right ← n− 1
while left < right

mid ← left + (right − left) //2
if A[left] ≤ A[mid] and A[left] ≤ x ≤ A[mid]

right ← mid
else if A[mid] < A[right] and (x > A[right] or x ≤ A[mid])

right ← mid
else

left ← mid + 1
return left if A[left] = x else −1

■

3. Let T be a binary tree with n vertices. Deleting any vertex v splits T into at most three
subtrees, containing the left child of v (if any), the right child of v (if any), and the parent of
v (if any). We call v a central vertex if each of these smaller trees has at most n/2 vertices.
See below for a 34 node binary trees, where deleting the central vertex leaves 3 subtrees, with
14, 7, and 12 nodes each.

Describe and analyze an algorithm to find a central vertex in an arbitrary given binary
tree. [Hint: It might be helpful to first prove that every tree has a central vertex, then chase
it down - recursively, if at all possible!]

Solution: Claim: A central vertex must exist.
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Proof: Consider the root of the tree. If it is central, we are done. If not, then exactly one of
the left and right subtrees must have size > n/2, as they cannot both have size greater if we
only have n nodes; the other has < n/2 nodes. We know the central vertex cannot be in the
smaller subtree of size k, since any cut inside of it will have the larger subtree on the parent
side of its cut, and hence will be too large.

Let v be the root of the larger subtree. If v is central, we are done. If not, removing v
leaves 3 smaller subtrees: the parent component T1, and the two children which I’ll denote by
T2 and T3. Let |Ti| be the number of vertices in subtree Ti, so that 1 + |T1|+ |T2|+ |T3| = n.
We know that the parent cut is < n/2 in size, since we moved from the root of the tree to
the larger subtree, so |T1| < n/2. Since v is not central, we also know that one of the two
subtrees has > n/2 vertices; without loss of generality, suppose this is T2.

We again move into this subtree, and update v be the root of this subtree. We have the
same situation: the parent cut must be smaller than n/2, and if v is not central, then one
of the subtrees must be of size > 2. But, the larger subtree’s size must have decreased, as
we moved down one vertex in the tree. So, as we iterate this process, we know the larger
subtree’s size is decreasing, and eventually such a path terminates at a leaf (in which case
the subtree sizes are 0). So at some point along this path to the leaf, we hit a vertex v where
both child trees have < n/2 nodes, and the parent will still be < n/2 because we chose to
move down to v. This is our central vertex. □

This leads to an immediate algorithm: First, use a postorder traversal to calculate the
size of every rooted subtree. This takes O(n) time, and then sizes can be stored inside each
node. Then, starting at the root, use these sizes to check if the node is central, moving down
in the tree to the larger subtree until we find such a vertex. Since we traverse a root to leaf
path, this takes worst case O(n) time as well.

The runtime of this is Θ(n) total, as the postorder traversal takes Θ(n) time (and space)
to store the size of every rooted subtree, and then the main algorithm traverses a root to leaf
path, which is O(n) time in the worst case. (Note that these trees are not balanced, so you
cannot claim O(log n) as in balanced binary search trees.)

■
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4. Sample solved problem:

You are interested in analyzing some hard-to-obtain data from two separate databases,
which I’ll call A and B. Each database contains n numerical values, so that there are 2n
total, and you may assume that no two are the same. You’d like to determine the median
value of this set of 2n values, which we define to be the nth value.

However, the situation is complicated by the fact that you can only access these values
through queries to the databases. In a single query, you can specify a value k to one of the
two databases, and the chosen database will return the kth smallest value that it contains.
Since queries are expensive, you would like to compute the median using as few queries as
possible.

Given an algorithm that finds the median value using at most O(log n) queries. Be sure to
specify the algorithm, the analysis for the number of queries, and a justification (i.e. a proof)
that your algorithm returns the median value. (To keep things simpler, you are welcome to
assume that n is a power of 2.)

Solution:

I’ll index the elements of each database from 1 to n, so that query(A, i) looks up the ith

entry in the database A. Suppose we first query each database for its median—that is, we
query each one for element n/2. Let m1 be the median from database 1 and let m2 be the
median from database 2. Suppose, without loss of generality, that m1 < m2. We know that
n/2 elements in database 1 are less than or equal to m1, and therefore must also be less than
m2. (We don’t yet know how the remaining n/2 elements in database 1 are ordered with
respect to m2). Similarly, we know that n/2 elements in database 2 are greater than m2

and therefore also greater than m1 (but we don’t know how the remaining n/2 elements in
database 2 are ordered with respect to m1.

At this point, we can conclude something: the median of all 2n elements must be in the
largest half of database 1, or in the smallest half of database 2. At this point, we can chop of
databases in half, and recurse!

Pseudocode:

FindMedian(A, amin, amax, B, bmin, bmax):
if amax == amin

ma ← query(A, 1)
mb ← query(B, q)
return min(ma,mb)

ma ← query(A, (amax + amin − 1)/2)
mb ← query(B, (bmax + bmin − 1)/2)
if ma < mb

return FindMedian(A,ma + 1, amax, B, bmin,mb)
else

return FindMedian(A, amin,ma, B,mb + 1, bmax)

Our initial call is then to FindMedian(A, 1, n,B, 1, n); from there on out, amin and amax

(as well as the similar values in B) represent the subdatabase that we are working with in
that recursive call.

Proof of correctness: Induction on n:

Base case: There is a single element in each database, so the median is (by definition) the
smaller of the two. This is done in the first if statement of our pseudocode.
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Inductive Hypothesis: For any value < n of items in each database, our algorithm correctly
returns the median of all elements in the two databases.

Inductive Step: Consider a database of 2n elements (so exactly n in each individual one).
We first find the two medians, ma and m2. As described above, if we have ma < mb, then
elements in the first half of database A are less than both medians, and elements in the second
half of database B are greater than both. Since there are n/2 elements in each of these halves,
we know that the overall median cannot be in those sections: if it were, we would have a
contradiction, because there are n+1 elements greater than ma, and n+1 elements less than
mb. Since the median is the nth smallest, this is impossible.

Since we discard the same number of elements from A and B, the median overall will be
equal to the median of the smaller databases of size n each. By our inductive hypothesis, our
algorithm will correctly find the median of these smaller databases, and thus will return the
overall correct value.

Runtime: Our base case makes two queries and a comparison, which is total time O(1).

We then can construct the recurrence as follows: Our pseudocode makes 2 queries, then
does a comparison, then calculates two additions and two divisions, before making a recursive
call on a database which is half as big. The resulting recurrence is

T (n) = T (n/2) +O(1)

Plugging into Master theorem, we get T (n) = Θ(log n).
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