
Adv . Dale Structures

Van Emde
Boas trees

Reay
-Hwa posted,
due next Friday

- No class on Tniday this
week

(happy HW -

ing)
- Will have at least I

more Hw Lafferbreed
- Project proposals : due

April 2 (ne exceptions)
(2-3 pages

- see webpage
for details)

canentdatastruc.ly:
What if we restrict inputs ?

God: Have a bounded
set of possible elements,
I want to store which

ones are in my
set

.

ie : subset of 32
-bit

- integer
or list of names

call E 30 chars)

9:E¥]• deleteCx)
° Max fmln
• SuccessorCx)
• predecessor (x)

Tiered Bitrectw :
Put a summary on top

of

attacked" YB
-a
Tie
How to Szarek/update :

Eichel for next value
* In X's block

if none, move up
t

scan upper her (
until 1)

Move down & find
Min in low block

Runtime : B t# TB
= OCB tu)

How to find
"best "

value for B ?
- ↳

What about deleting ?
X O

fo Xo

-I delete in bottom
Oa)

① Is -empty
- if empty , delete top

co→1)

ocru)
-

So : tsering helped ! Lundy
can we improve even

more?

TTX D
Mu blocks summery,
each My size size

nu

Kearse !

For each block of

size ru , apply the
same construction :

UH she blocks ,
plus summery

Picture:
suppose
,

we have ASCII !

U 65,536

run -- 256@U'4=16)

Before :EJusatnarrygummog.lt#..zsF&ptrs
Eta:

O L
- - - 255

Change : recursively
.

swimming

Summary a data blocks
:

each size 256

Apply same construction
:

↳ = I 6

summerytf
pts

.

L t ist

Each of those is size 16 .

it = 4

so :

t¥
1211
toddle

C- stop when

Details

↳
recursive summary

of size My

ptrs →

¥¥i¥¥e
Peach is a DS of size My

Noy: Implementation !

Look-upG) : I lookup
(And element i 's TIF in
the spot
in L%bit vector
→ summary

is useless

Lcu) =L thou)
Insert : E 2 inserts in
→maker data structure

(plus an isEmpty

IsEmpty l) : 1 recursive is Empty
-

Scu) = ItsChu)
Min/MaxI : 2 recursive calls

µµ)
One on summary

⇒µ↳ then on that level
H recursive structure

Sacc x) :
-
-

Max in bottom level,
if max == X ,
recursive sue

on

summary
data strong

& then min
in Its

lower level

Delete : I delete ,
1 is Empty, a Cmaybe)
another delete on

summary

The reason :

-

TCU) -- Tfa) told

or

TCU)=2T(ru) toCD

Use domain transformation
(link posted) :

Let Sda) --Tczkttcu
so ke log U

⇒ SCK)=2SCktdtl
or

-

- SC H

to solve

log U
or log log U
]

The takeaway :

-

it

Clog U) worst case n
O lookups

us : OCU) told

but :
Oahu)

U is size of universe!

If n Z log U,
we beat BST in

lookups !

(since log n Z log log U)
" proto VEDB trees)

van Emde Boas free
-

:

A slight mode Raton of our
toed bivector

.

Besides summary
- Mu points

to next level,
we'll also

store min ←max

⇒ Cat each level).

Lookups are unchanged
(except we also check
if target is min max

or max) sumn Fg
Important : min - max M"

are only stored in
special Feld .

(this changes the
code. . .)

The Good
-

i

• Min , max , * is Empty are
now OG) tme !

vs
. 0dg U) toclog log U)

before

• Look up is unchanged :

OG og log
UD

If × isn't max or min,

then query
L¥IM

DS inslot X mod
Uk

The bad
-

:

- Need to change insert,
delete

,
t Succfpred .

Insert :

Basically thesame
⇐ 2 inserts in Tut DS)

But : o Max t min

° empty case

First attempt- :

If tree is empty or size 1 :

change max mm

⇐Enea ma×qEI?I¥G- update if needed)
Then insertGTmo#
into L7#h DS
If it wasn't empty
insert into SamratTf

⇒Runtime.INT#L)tHur

Doingbete :An observation : If

tree is empty , insert
runs in OCD time .

Recall :
IFlow level isempty :

insert twice{
otherwise

:

once↳
It was empty blog

New recurrence :f
ICU)=1t1tI(Du

l l

⇒ 0Goglog# u

Deletej.

Similar setup : ←
If size is 1 , update0£ min Imax & done

Else if minor max)
is

deleted, replace with

it (QIsfc.IT?st5tnon-④ empty block
,
a

0dgIght) recursively delete
that

.

Else :

delete x mod Uk
from correct subtree

if empty ,
delete LEH

from summery

Key : again, only
delete

twice if one was

empty !

New recurrence
:

Dcu) = ItDfa)
+ I

= 0 (log log U)

Succession
If tree is empty or x > max :

declare failure

elseif tree LITT is
not empty & X c max
in that tree ,

recursively call successor
on
that tree

else :
Find successor

of ¥4
in summary
if it exists, return
min in that tree

otherwise
return max of

summary

Runtime:
Scu) = Its

⇒ log log U

takeaway: MAGIC ! !
Runtime is 0dg log U)
or OG) for min , mad(
& is Empty)

If n ⇒ log U :

exponentially faster
#chan a BST.

The catch
-

!

Space
& hidden big -0

Other cool thing :

cache oblivious

Next time
-

:

switching focus slightly :

- heap variants
(binomial tf

bonacci

heaps)
- and suffx bees

