
CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

7 Fibona

i Heaps (February 11 and 16)

7.1 Mergeable Heaps

A mergeable heap is a data stru
ture that stores a
olle
tion of keys

1

and supports the following

operations.

� Insert: Insert a new key into a heap. This operation
an also be used to
reate a new heap

ontaining just one key.

� FindMin: Return the smallest key in a heap.

� DeleteMin: Remove the smallest key from a heap.

� Merge: Merge two heaps into one. The new heap
ontains all the keys that used to be in

the old heaps, and the old heaps are (possibly) destroyed.

If we never had to use DeleteMin, mergeable heaps would be
ompletely trivial. Ea
h \heap"

just stores to maintain the single re
ord (if any) with the smallest key. Inserts and Merges

require only one
omparison to de
ide whi
h re
ord to keep, so they take
onstant time. FindMin

obviously takes
onstant time as well.

If we need DeleteMin, but we don't
are how long it takes, we
an still implement mergeable

heaps so that Inserts, Merges, and FindMins take
onstant time. We store the re
ords in a

ir
ular doubly-linked list, and keep a pointer to the minimum key. Now deleting the minimum

key takes �(n) time, sin
e we have to s
an the linked list to �nd the new smallest key.

In this le
ture, I'll des
ribe a data stru
ture
alled a Fibona

i heap that supports Inserts,

Merges, and FindMins in
onstant time, even in the worst
ase, and also handles DeleteMin in

O(logn) amortized time. That means that any sequen
e of n Inserts, m Merges, f FindMins,

and d DeleteMins takes O(n+m+ f+ d logn) time.

7.2 Binomial Trees and Fibona

i Heaps

A Fibona

i heap is a
ir
ular doubly linked list, with a pointer to the minimum key, but the

elements of the list are not single keys. Instead, we
olle
t keys together into stru
tures
alled

binomial heaps. Binomial heaps are trees

2

that satisfy the heap property (every node has a

smaller key than its
hildren) and have the following spe
ial stru
ture.

B4

B4

5B

Binomial trees of order 0 through 5.

1

In the previous le
ture on treaps, I
alled the keys priorities to distinguish them from sear
h keys.

2

[CLR℄ uses the name \binomial heap" to des
ribe a more
ompli
ated data stru
ture
onsisting of a set of

heap-ordered binomial trees, with at most one binomial tree of ea
h order.

1

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

A kth order binomial tree, whi
h I'll abbreviate B

k

, is de�ned re
ursively. B

0

is a single node.

For all k > 0, B

k

onsists of two
opies of B

k-1

that have been linked together, meaning that the

root of one B

k-1

has be
ome a new
hild of the other root.

Binomial trees have several useful properties, whi
h are easy to prove by indu
tion (hint, hint).

� The root of B

k

has degree k.

� The
hildren of the root of B

k

are the roots of B

0

; B

1

; : : : ; B

k-1

.

� B

k

has height k.

� B

k

has 2

k

nodes.

� B

k

has

�

k

r

�

nodes at depth r, for all 0 � r � k.

� B

k

has 2

k-r-1

nodes with height r, for all 0 � r < k, and one node (the root) with height k.

Although we normally don't
are in this
lass about the low-level details of data stru
tures,

we need to be spe
i�
 about how Fibona

i heaps are a
tually implemented, so that we
an be

sure that
ertain operations
an be performed qui
kly. Every node in a Fibona

i heap points to

four other nodes: its parent, its \next" sibling, its \previous" sibling, and one of its
hildren. The

sibling pointers are used to join the roots together into a
ir
ular doubly-linked root list. In ea
h

binomial tree, the
hildren of ea
h node are also joined into a
ir
ular doubly-linked list using the

sibling pointers.

min
min

A high-level view and a detailed view of the same Fibona

i heap. Null pointers are omitted for
larity.

With this representation, we
an add or remove nodes from the root list, merge two root lists

together, link one two binomial tree to another, or merge a node's list of
hildren with the root list,

in
onstant time, and we
an visit every node in the root list in
onstant time per node. Having

established that these primitive operations
an be performed qui
kly, we never again need to think

about the low-level representation details.

7.3 Operations on Fibona

i Heaps

The Insert,Merge, and FindMin algorithms for Fibona

i heaps are exa
tly like the
orrespond-

ing algorithms for linked lists. Sin
e we maintain a pointer to the minimum key, FindMin is trivial.

To insert a new key, we add a single node (whi
h we should think of as a B

0

) to the root list and (if

ne
essary) update the pointer to the minimum key. To merge two Fibona

i heaps, we just merge

the two root lists and keep the pointer to the smaller of the two minimum keys. Clearly, all three

operations take O(1) time.

2

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

Deleting the minimum key is a little more
ompli
ated. First, we remove the minimum key

from the root list and spli
e its
hildren into the root list. Ex
ept for updating the parent pointers,

this takes O(1) time. Then we s
an through the root list to �nd the new smallest key and update

the parent pointers of the new roots. This s
an
ould take �(n) time in the worst
ase. To bring

down the amortized deletion time, we apply a Cleanup algorithm, whi
h links pairs of equal-size

binomial heaps until there is only one binomial heap of any parti
ular size.

Let me des
ribe the Cleanup algorithm in more detail, so that we
an analyze its running

time. In the following algorithm, ea
h B[i℄ is a pointer to some already-visited binomial heap of

order i, or Null if there is no su
h binomial heap. Noti
e that Cleanup also resets all the parent

pointers and updates the pointer to the minimum key.

Cleanup:

minkey some node in the root list

for i 0 to lgn

B[i℄ = Null

for ea
h node v in the root list

(?) parent(v) Null

w B[deg(v)℄

while w 6= Null

B[deg(v)℄ Null

if key(v) � key(w)

swap v ! w

(??) remove w from the root list

link w to v

w B[deg(v)℄

B[deg(v)℄ v

if key(minkey) > key(v)

minkey v

The running time of Cleanup is O(r), where r is the length of the root list just before Cleanup

is
alled. The easiest way to see this is to
ount the number of times the two starred lines
an be

exe
uted: (?) is exe
uted on
e for every node v on the root list, and (??) is exe
uted at most on
e

for every node w on the root list. In the worst
ase (if there have been no previous deletions, for

example) r = n, so the worst-
ase running time is linear. After Cleanup is �nished, r = O(logn),

sin
e all the binomial heaps have unique orders and the largest has order at most log

2

n.

The time for a DeleteMin is O(r + deg(min)), where min is the node deleted. Although

deg(min) is at most lgn, we
an still have r = �(n), so the worst-
ase time for a DeleteMin is

�(n). After a DeleteMin, r = O(logn).

7.4 Amortized Analysis of DeleteMin

To bound the amortized
ost, observe that ea
h insertion in
rements r. If we
harge ea
h insertion

a
onstant \
leanup tax", and use the
olle
ted tax to pay for the Cleanup algorithm, the unpaid

ost of a DeleteMin is only O(deg(min)) = O(logn).

If we want to be more formal about it, we
an de�ne the potential of the Fibona

i heap to be

an appropriate
onstant times the number of roots: � = �r . Re
all that the amortized time of

3

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

an operation
an be de�ned as its a
tual time plus the
hange in the potential, as long as � = 0

initially (it is) and we always have � � 0 (we do). Ea
h Insert in
reases the potential � by

� = �(1), so the amortized
ost is still
onstant. A Merge a
tually doesn't
hange � at all, sin
e

the new Fibona

i heap has all the roots from its
onstituents and no others, so its amortized
ost

is O(1). The a
tual
ost of a DeleteMin is O(r+ logn), and it in
reases � by O(logn) - �r, so

provided we
hoose a large enough
onstant �, the amortized
ost of a DeleteMin is O(logn).

7.5 Deleting Arbitrary Nodes

In some appli
ations of heaps, we also need the ability to delete an arbitrary node. The usual way

to do this is to de
rease the node's key to -1, and then use DeleteMin. Here I'll des
ribe how

to de
rease the key of a node in a Fibona

i heap; the algorithm will take O(logn) time in the

worst
ase, but the amortized time will be only O(1).

Our algorithm for de
reasing the key at a node v follows two simple rules.

1. Promote v up to the root list. (This moves the whole subtree rooted at v.)

2. As soon as two
hildren of any node w have been promoted, immediately promote w.

In order to enfor
e the se
ond rule, we now mark
ertain nodes in the Fibona

i heap. Spe
i�
ally,

a node is marked if exa
tly one of its
hildren has been promoted. If some
hild of a marked node

is promoted, we promote (and unmark) that node as well.

Here's a more formal des
ription of the algorithm. The input is a pointer to a node v and the

new value k for its key.

De
reaseKey(v; k):

key(v) k

unmark v

update the pointer to the smallest key

if parent(v) 6= Null

remove v from parent(v)'s list of
hildren

insert v into the root list

if parent(v) is unmarked

mark parent(v)

else

De
reaseKey(parent(v); key(parent(v)))

Note that the algorithm
alls itself re
ursively. The e�e
t of the re
ursive
alls is a \
as
ading

promotion"|ea
h
onse
utive marked an
estor of v is promoted to the root list and unmarked,

otherwise un
hanged. (Noti
e that the re
ursive
alls do not a
tually de
rease the an
estors' keys!)

The lowest unmarked an
estor is then marked, sin
e one of its
hildren has been promoted.

The time to de
rease the key of a node v is

O(1+#
onse
utive marked an
estors);

whi
h is O(depth(v)). If we still had full binomial heaps, then this would be O(logn), but we

don't | promoting nodes destroys the ni
e re
ursive stru
ture of binomial trees, so it is no longer

obvious that our
omponent heaps have logarithmi
 depth.

4

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

We have a similar problem with DeleteMin also. Our amortized analysis used the fa
t that

the maximum degree of any node is O(logn), whi
h implies that after a Cleeanup the number

of nodes in the root list is O(logn). But now that we don't have
omplete binomial heaps, this

\fa
t" isn't quite as obvious.

7.6 Bounding the Degree (and the Depth)

First let's prove that the maximum degree is still only O(logn); the proof of depth will be almost

exa
tly the same, For any node v, let jvj denote the number of nodes in the subtree of v, in
luding v

itself. Our proof uses the following lemma, whi
h �nally tells us why these things are
alled

Fibona

i heaps!

Lemma 1. For any node v in a Fibona

i heap, jvj � F

deg(v)+2

.

Before we get to the proof, let me give some intuition about why this lemma is true. Consider

how many nodes we
an remove from a binomial heap of order k without
ausing any
as
ading

promotions. The most damage we
an do is by removing the largest subtree of every node in B

k

.

Call the result a Fibona

i tree of order k + 1, and denote it f

k+1

. As a base
ase, let f

1

be the

tree with one (unmarked) node, that is, f

1

= B

0

. The reason for shifting the index will be
ome

lear shortly (if it isn't already).

Fibona

i trees of order 1 through 6. Light nodes have been promoted away; dark nodes are marked.

Re
all that the root of a binomial tree B

k

has k
hildren, whi
h are roots of B

0

; B

1

; : : : ; B

k-1

.

To
onvert B

k

to f

k+1

, we promote the root of B

k-1

, and re
ursively
onvert ea
h of the other

subtrees B

i

to f

i+1

. The root of the resulting tree f

k+1

has degree k - 1, and the
hildren are the

roots of smaller Fibona

i trees f

1

; f

2

; : : : ; f

k-1

. We
an also
onsider B

k

as two
opies of B

k-1

linked together. It's quite easy to show that an order-k Fibona

i tree
onsists of an order k - 2

Fibona

i tree linked to an order k- 1 Fibona

i tree. (See the pi
ture below.)

B
0B

1B
2B

3B
4B

5

B
6

f
f

f
f

B
5

B
6

B
5

f

f
f

f
7

5

4

3

f
2

1

5

7

6

Comparing the re
ursive stru
tures of B

6

and f

7

.

5

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

Sin
e f

1

and f

2

both have exa
tly one node, the number of nodes in an order-k Fibona

i tree

is exa
tly the kth Fibona

i number. (That's why we
hanged in the index.) Sin
e the degree of

the root of f

k

is k- 2, Lemma 1 is true for Fibona

i trees.

Fibona

i trees will turn out to be the worst
ase for Lemma 1, but let's prove it in general.

Proof (Lemma 1): Let w

i

be the ith
hild (in
hronologi
al order) added to v. I
laim that

deg(i) � i - 2. We
an prove this
laim using indu
tion. Assume that when w

k

was linked to v,

our
laim was true for all i < k. Then w

k

was linked to v, deg(w

k

) = deg(v) = k - 1. Sin
e that

time, at most one
hild of w

k

has been removed, sin
e otherwise w

k

would have been promoted to

the root list already. So deg(w

k

) � k- 2, as
laimed. (What's the base
ase?)

We
an also qui
kly observe that deg(w

1

) � 0. (Duh.)

Now we're almost done. Let s

d

be the minimum possible size of a tree with degree d in any

Fibona

i heap. My earlier
laim implies that

s

d

� 2+

d

X

i=2

s

i-2

If we assume indu
tively that s

i

� F

i+2

for all i < d (with the easy base
ase s

0

� F

2

= 1), we have

s

d

� 2+

d

X

i=2

F

i

= 1+

d

X

i=0

F

i

= F

d+2

:

The last step was a pra
ti
e problem on HW0! �

You
an easily show (using either indu
tion or the annihilator method) that F

k+2

> �

k

where

� =

1+

p

5

2

� 1:618 is the golden ratio. Thus, Lemma 1 implies that

deg(v) � log

�

jvj = O(logjvj);

whi
h is just what we wanted. Sin
e the size of any subtree in an n-node Fibona

i heap is obviously

at most n, the degree of any node is O(logn), whi
h is exa
tly what we wanted.

A similar proof shows that the depth of any node is also O(logn). Intuitively we
an see this

by observing that an order-k Fibona

i tree has depth exa
tly k - 2. As it turns out, though, we

don't a
tually need to prove this, sin
e the depth won't be
onsidered in the amortized analysis.

7.7 Analyzing De
reaseKey

To
ompute the amortized
ost of De
reaseKey, we'll use the potential method, just as we did

for DeleteMin. One general idea that helps to �nd an appropriate potential fun
tion � is to try

to follow two simple rules:

� The potential � should go up a little whenever we do a little work.

� The potential � should go down a lot whenever we do a lot of work.

Re
all that the a
tual
ost of De
reaseKey(v; k) is 1 plus the number of
onse
utive marked

an
estors of v. Our algorithm unmarks ea
h of those marked an
estors, and possibly also marks

one node. So the number of marked nodes might be an appropriate potential fun
tion here.

6

CS 373 Le
ture 7: Fibona

i Heaps Spring 1999

Whenever we do a little bit of work, the number of marks goes up by at most one; whenever we

do a lot of work, the number of marks goes down a lot.

More pre
isely, letm and m

0

be the number of marked nodes before and after a De
reaseKey

operation. The a
tual time is

t = 1+#
onse
utive marked an
estors of v

and if we set � = m, the
hange in potential is

�� = m

0

-m � 1-#
onse
utive marked an
estors of v;

so the amortized
ost of De
reaseKey is t+ �� � 2 = O(1).

7.8 Reanalyzing DeleteMin (and everything else)

Unfortunately, our analyses of DeleteMin and De
reaseKey used two di�erent potential fun
-

tions. Unless we
an �nd a single potential fun
tion that works for both operations, we
an't
laim

both amortized time bounds simultaneously. So we need to �nd a potential fun
tion � that goes

up a little during a
heap DeleteMin or a
heap De
reaseKey, and goes down a lot during an

expensive DeleteMin or an expensive De
reaseKey.

Let's look a little more
arefully at the
ost of ea
h Fibona

i heap operation, and its e�e
t

on both the number of roots and the number of marked nodes, the things we used as out earlier

potential fun
tions. Let r and m be the numbers of roots and marks before ea
h operation, and

let r

0

and m

0

be the numbers of roots and marks after the operation.

operation a
tual
ost r

0

- r m

0

-m

Insert 1 1 0

Merge 1 0 0

DeleteMin r+ r

0

r

0

- r 0

De
reaseKey 1+m-m

0

1+m-m

0

m

0

-m

In parti
ular, noti
e that promoting a node in De
reaseKey requires
onstant time and in
reases

the number of roots by one, and that we promote (at most) one unmarked node.

If we guess that the
orre
t potential fun
tion is a linear
ombination of our old potential

fun
tions r and m and play around with various possibilities for the
oeÆ
ients, we will eventually

stumble a
ross the
orre
t answer:

� = r+ 2m

To see that this potential fun
tion gives us good amortized bounds for every Fibona

i heap

operation, let's add two more
olumns to our table.

operation a
tual
ost r

0

- r m

0

-m �

0

-� amortized
ost

Insert 1 1 0 2 3

Merge 1 0 0 0 1

DeleteMin r+ r

0

r

0

- r 0 2r r

0

De
reaseKey 1+m-m

0

1+m-m

0

m

0

-m 1+m

0

-m 2

Sin
e Lemma 1 implies that r

0

= O(logn), we're done!

7

