
CS 373 Leture 7: Fibonai Heaps Spring 1999

7 Fibonai Heaps (February 11 and 16)

7.1 Mergeable Heaps

A mergeable heap is a data struture that stores a olletion of keys

1

and supports the following

operations.

� Insert: Insert a new key into a heap. This operation an also be used to reate a new heap

ontaining just one key.

� FindMin: Return the smallest key in a heap.

� DeleteMin: Remove the smallest key from a heap.

� Merge: Merge two heaps into one. The new heap ontains all the keys that used to be in

the old heaps, and the old heaps are (possibly) destroyed.

If we never had to use DeleteMin, mergeable heaps would be ompletely trivial. Eah \heap"

just stores to maintain the single reord (if any) with the smallest key. Inserts and Merges

require only one omparison to deide whih reord to keep, so they take onstant time. FindMin

obviously takes onstant time as well.

If we need DeleteMin, but we don't are how long it takes, we an still implement mergeable

heaps so that Inserts, Merges, and FindMins take onstant time. We store the reords in a

irular doubly-linked list, and keep a pointer to the minimum key. Now deleting the minimum

key takes �(n) time, sine we have to san the linked list to �nd the new smallest key.

In this leture, I'll desribe a data struture alled a Fibonai heap that supports Inserts,

Merges, and FindMins in onstant time, even in the worst ase, and also handles DeleteMin in

O(logn) amortized time. That means that any sequene of n Inserts, m Merges, f FindMins,

and d DeleteMins takes O(n+m+ f+ d logn) time.

7.2 Binomial Trees and Fibonai Heaps

A Fibonai heap is a irular doubly linked list, with a pointer to the minimum key, but the

elements of the list are not single keys. Instead, we ollet keys together into strutures alled

binomial heaps. Binomial heaps are trees

2

that satisfy the heap property (every node has a

smaller key than its hildren) and have the following speial struture.

B4

B4

5B

Binomial trees of order 0 through 5.

1

In the previous leture on treaps, I alled the keys priorities to distinguish them from searh keys.

2

[CLR℄ uses the name \binomial heap" to desribe a more ompliated data struture onsisting of a set of

heap-ordered binomial trees, with at most one binomial tree of eah order.

1

CS 373 Leture 7: Fibonai Heaps Spring 1999

A kth order binomial tree, whih I'll abbreviate B

k

, is de�ned reursively. B

0

is a single node.

For all k > 0, B

k

onsists of two opies of B

k-1

that have been linked together, meaning that the

root of one B

k-1

has beome a new hild of the other root.

Binomial trees have several useful properties, whih are easy to prove by indution (hint, hint).

� The root of B

k

has degree k.

� The hildren of the root of B

k

are the roots of B

0

; B

1

; : : : ; B

k-1

.

� B

k

has height k.

� B

k

has 2

k

nodes.

� B

k

has

�

k

r

�

nodes at depth r, for all 0 � r � k.

� B

k

has 2

k-r-1

nodes with height r, for all 0 � r < k, and one node (the root) with height k.

Although we normally don't are in this lass about the low-level details of data strutures,

we need to be spei� about how Fibonai heaps are atually implemented, so that we an be

sure that ertain operations an be performed quikly. Every node in a Fibonai heap points to

four other nodes: its parent, its \next" sibling, its \previous" sibling, and one of its hildren. The

sibling pointers are used to join the roots together into a irular doubly-linked root list. In eah

binomial tree, the hildren of eah node are also joined into a irular doubly-linked list using the

sibling pointers.

min
min

A high-level view and a detailed view of the same Fibonai heap. Null pointers are omitted for larity.

With this representation, we an add or remove nodes from the root list, merge two root lists

together, link one two binomial tree to another, or merge a node's list of hildren with the root list,

in onstant time, and we an visit every node in the root list in onstant time per node. Having

established that these primitive operations an be performed quikly, we never again need to think

about the low-level representation details.

7.3 Operations on Fibonai Heaps

The Insert,Merge, and FindMin algorithms for Fibonai heaps are exatly like the orrespond-

ing algorithms for linked lists. Sine we maintain a pointer to the minimum key, FindMin is trivial.

To insert a new key, we add a single node (whih we should think of as a B

0

) to the root list and (if

neessary) update the pointer to the minimum key. To merge two Fibonai heaps, we just merge

the two root lists and keep the pointer to the smaller of the two minimum keys. Clearly, all three

operations take O(1) time.

2

CS 373 Leture 7: Fibonai Heaps Spring 1999

Deleting the minimum key is a little more ompliated. First, we remove the minimum key

from the root list and splie its hildren into the root list. Exept for updating the parent pointers,

this takes O(1) time. Then we san through the root list to �nd the new smallest key and update

the parent pointers of the new roots. This san ould take �(n) time in the worst ase. To bring

down the amortized deletion time, we apply a Cleanup algorithm, whih links pairs of equal-size

binomial heaps until there is only one binomial heap of any partiular size.

Let me desribe the Cleanup algorithm in more detail, so that we an analyze its running

time. In the following algorithm, eah B[i℄ is a pointer to some already-visited binomial heap of

order i, or Null if there is no suh binomial heap. Notie that Cleanup also resets all the parent

pointers and updates the pointer to the minimum key.

Cleanup:

minkey some node in the root list

for i 0 to lgn

B[i℄ = Null

for eah node v in the root list

(?) parent(v) Null

w B[deg(v)℄

while w 6= Null

B[deg(v)℄ Null

if key(v) � key(w)

swap v ! w

(??) remove w from the root list

link w to v

w B[deg(v)℄

B[deg(v)℄ v

if key(minkey) > key(v)

minkey v

The running time of Cleanup is O(r), where r is the length of the root list just before Cleanup

is alled. The easiest way to see this is to ount the number of times the two starred lines an be

exeuted: (?) is exeuted one for every node v on the root list, and (??) is exeuted at most one

for every node w on the root list. In the worst ase (if there have been no previous deletions, for

example) r = n, so the worst-ase running time is linear. After Cleanup is �nished, r = O(logn),

sine all the binomial heaps have unique orders and the largest has order at most log

2

n.

The time for a DeleteMin is O(r + deg(min)), where min is the node deleted. Although

deg(min) is at most lgn, we an still have r = �(n), so the worst-ase time for a DeleteMin is

�(n). After a DeleteMin, r = O(logn).

7.4 Amortized Analysis of DeleteMin

To bound the amortized ost, observe that eah insertion inrements r. If we harge eah insertion

a onstant \leanup tax", and use the olleted tax to pay for the Cleanup algorithm, the unpaid

ost of a DeleteMin is only O(deg(min)) = O(logn).

If we want to be more formal about it, we an de�ne the potential of the Fibonai heap to be

an appropriate onstant times the number of roots: � = �r . Reall that the amortized time of

3

CS 373 Leture 7: Fibonai Heaps Spring 1999

an operation an be de�ned as its atual time plus the hange in the potential, as long as � = 0

initially (it is) and we always have � � 0 (we do). Eah Insert inreases the potential � by

� = �(1), so the amortized ost is still onstant. A Merge atually doesn't hange � at all, sine

the new Fibonai heap has all the roots from its onstituents and no others, so its amortized ost

is O(1). The atual ost of a DeleteMin is O(r+ logn), and it inreases � by O(logn) - �r, so

provided we hoose a large enough onstant �, the amortized ost of a DeleteMin is O(logn).

7.5 Deleting Arbitrary Nodes

In some appliations of heaps, we also need the ability to delete an arbitrary node. The usual way

to do this is to derease the node's key to -1, and then use DeleteMin. Here I'll desribe how

to derease the key of a node in a Fibonai heap; the algorithm will take O(logn) time in the

worst ase, but the amortized time will be only O(1).

Our algorithm for dereasing the key at a node v follows two simple rules.

1. Promote v up to the root list. (This moves the whole subtree rooted at v.)

2. As soon as two hildren of any node w have been promoted, immediately promote w.

In order to enfore the seond rule, we now mark ertain nodes in the Fibonai heap. Spei�ally,

a node is marked if exatly one of its hildren has been promoted. If some hild of a marked node

is promoted, we promote (and unmark) that node as well.

Here's a more formal desription of the algorithm. The input is a pointer to a node v and the

new value k for its key.

DereaseKey(v; k):

key(v) k

unmark v

update the pointer to the smallest key

if parent(v) 6= Null

remove v from parent(v)'s list of hildren

insert v into the root list

if parent(v) is unmarked

mark parent(v)

else

DereaseKey(parent(v); key(parent(v)))

Note that the algorithm alls itself reursively. The e�et of the reursive alls is a \asading

promotion"|eah onseutive marked anestor of v is promoted to the root list and unmarked,

otherwise unhanged. (Notie that the reursive alls do not atually derease the anestors' keys!)

The lowest unmarked anestor is then marked, sine one of its hildren has been promoted.

The time to derease the key of a node v is

O(1+#onseutive marked anestors);

whih is O(depth(v)). If we still had full binomial heaps, then this would be O(logn), but we

don't | promoting nodes destroys the nie reursive struture of binomial trees, so it is no longer

obvious that our omponent heaps have logarithmi depth.

4

CS 373 Leture 7: Fibonai Heaps Spring 1999

We have a similar problem with DeleteMin also. Our amortized analysis used the fat that

the maximum degree of any node is O(logn), whih implies that after a Cleeanup the number

of nodes in the root list is O(logn). But now that we don't have omplete binomial heaps, this

\fat" isn't quite as obvious.

7.6 Bounding the Degree (and the Depth)

First let's prove that the maximum degree is still only O(logn); the proof of depth will be almost

exatly the same, For any node v, let jvj denote the number of nodes in the subtree of v, inluding v

itself. Our proof uses the following lemma, whih �nally tells us why these things are alled

Fibonai heaps!

Lemma 1. For any node v in a Fibonai heap, jvj � F

deg(v)+2

.

Before we get to the proof, let me give some intuition about why this lemma is true. Consider

how many nodes we an remove from a binomial heap of order k without ausing any asading

promotions. The most damage we an do is by removing the largest subtree of every node in B

k

.

Call the result a Fibonai tree of order k + 1, and denote it f

k+1

. As a base ase, let f

1

be the

tree with one (unmarked) node, that is, f

1

= B

0

. The reason for shifting the index will beome

lear shortly (if it isn't already).

Fibonai trees of order 1 through 6. Light nodes have been promoted away; dark nodes are marked.

Reall that the root of a binomial tree B

k

has k hildren, whih are roots of B

0

; B

1

; : : : ; B

k-1

.

To onvert B

k

to f

k+1

, we promote the root of B

k-1

, and reursively onvert eah of the other

subtrees B

i

to f

i+1

. The root of the resulting tree f

k+1

has degree k - 1, and the hildren are the

roots of smaller Fibonai trees f

1

; f

2

; : : : ; f

k-1

. We an also onsider B

k

as two opies of B

k-1

linked together. It's quite easy to show that an order-k Fibonai tree onsists of an order k - 2

Fibonai tree linked to an order k- 1 Fibonai tree. (See the piture below.)

B
0B

1B
2B

3B
4B

5

B
6

f
f

f
f

B
5

B
6

B
5

f

f
f

f
7

5

4

3

f
2

1

5

7

6

Comparing the reursive strutures of B

6

and f

7

.

5

CS 373 Leture 7: Fibonai Heaps Spring 1999

Sine f

1

and f

2

both have exatly one node, the number of nodes in an order-k Fibonai tree

is exatly the kth Fibonai number. (That's why we hanged in the index.) Sine the degree of

the root of f

k

is k- 2, Lemma 1 is true for Fibonai trees.

Fibonai trees will turn out to be the worst ase for Lemma 1, but let's prove it in general.

Proof (Lemma 1): Let w

i

be the ith hild (in hronologial order) added to v. I laim that

deg(i) � i - 2. We an prove this laim using indution. Assume that when w

k

was linked to v,

our laim was true for all i < k. Then w

k

was linked to v, deg(w

k

) = deg(v) = k - 1. Sine that

time, at most one hild of w

k

has been removed, sine otherwise w

k

would have been promoted to

the root list already. So deg(w

k

) � k- 2, as laimed. (What's the base ase?)

We an also quikly observe that deg(w

1

) � 0. (Duh.)

Now we're almost done. Let s

d

be the minimum possible size of a tree with degree d in any

Fibonai heap. My earlier laim implies that

s

d

� 2+

d

X

i=2

s

i-2

If we assume indutively that s

i

� F

i+2

for all i < d (with the easy base ase s

0

� F

2

= 1), we have

s

d

� 2+

d

X

i=2

F

i

= 1+

d

X

i=0

F

i

= F

d+2

:

The last step was a pratie problem on HW0! �

You an easily show (using either indution or the annihilator method) that F

k+2

> �

k

where

� =

1+

p

5

2

� 1:618 is the golden ratio. Thus, Lemma 1 implies that

deg(v) � log

�

jvj = O(logjvj);

whih is just what we wanted. Sine the size of any subtree in an n-node Fibonai heap is obviously

at most n, the degree of any node is O(logn), whih is exatly what we wanted.

A similar proof shows that the depth of any node is also O(logn). Intuitively we an see this

by observing that an order-k Fibonai tree has depth exatly k - 2. As it turns out, though, we

don't atually need to prove this, sine the depth won't be onsidered in the amortized analysis.

7.7 Analyzing DereaseKey

To ompute the amortized ost of DereaseKey, we'll use the potential method, just as we did

for DeleteMin. One general idea that helps to �nd an appropriate potential funtion � is to try

to follow two simple rules:

� The potential � should go up a little whenever we do a little work.

� The potential � should go down a lot whenever we do a lot of work.

Reall that the atual ost of DereaseKey(v; k) is 1 plus the number of onseutive marked

anestors of v. Our algorithm unmarks eah of those marked anestors, and possibly also marks

one node. So the number of marked nodes might be an appropriate potential funtion here.

6

CS 373 Leture 7: Fibonai Heaps Spring 1999

Whenever we do a little bit of work, the number of marks goes up by at most one; whenever we

do a lot of work, the number of marks goes down a lot.

More preisely, letm and m

0

be the number of marked nodes before and after a DereaseKey

operation. The atual time is

t = 1+#onseutive marked anestors of v

and if we set � = m, the hange in potential is

�� = m

0

-m � 1-#onseutive marked anestors of v;

so the amortized ost of DereaseKey is t+ �� � 2 = O(1).

7.8 Reanalyzing DeleteMin (and everything else)

Unfortunately, our analyses of DeleteMin and DereaseKey used two di�erent potential fun-

tions. Unless we an �nd a single potential funtion that works for both operations, we an't laim

both amortized time bounds simultaneously. So we need to �nd a potential funtion � that goes

up a little during a heap DeleteMin or a heap DereaseKey, and goes down a lot during an

expensive DeleteMin or an expensive DereaseKey.

Let's look a little more arefully at the ost of eah Fibonai heap operation, and its e�et

on both the number of roots and the number of marked nodes, the things we used as out earlier

potential funtions. Let r and m be the numbers of roots and marks before eah operation, and

let r

0

and m

0

be the numbers of roots and marks after the operation.

operation atual ost r

0

- r m

0

-m

Insert 1 1 0

Merge 1 0 0

DeleteMin r+ r

0

r

0

- r 0

DereaseKey 1+m-m

0

1+m-m

0

m

0

-m

In partiular, notie that promoting a node in DereaseKey requires onstant time and inreases

the number of roots by one, and that we promote (at most) one unmarked node.

If we guess that the orret potential funtion is a linear ombination of our old potential

funtions r and m and play around with various possibilities for the oeÆients, we will eventually

stumble aross the orret answer:

� = r+ 2m

To see that this potential funtion gives us good amortized bounds for every Fibonai heap

operation, let's add two more olumns to our table.

operation atual ost r

0

- r m

0

-m �

0

-� amortized ost

Insert 1 1 0 2 3

Merge 1 0 0 0 1

DeleteMin r+ r

0

r

0

- r 0 2r r

0

DereaseKey 1+m-m

0

1+m-m

0

m

0

-m 1+m

0

-m 2

Sine Lemma 1 implies that r

0

= O(logn), we're done!

7

