
Advanced Data Structures

Anon-find
Analysis
(End!)

Notes
-Frst HW - posted next week
- sub next Friday 1/31 ,
no class Monday 2/3,
sub wed 2/5

Formally : 3 operations :

makesetCx) : take an item t create
a one element set for

- et
findCx) : return " canonical

"

element
of set containing X

union (x , y)
: Assuming that

X t y , form a new set that
is the union of the 2 sets holding
x -y , destroying the 2 old sets

.

(Also selects & returns a

canonical element for new set)

How to implement ?
- certainly use existing DS .

Use a table :

For each entry, record its
set label .

Runtme ? Wh
makeset : OG) Creek f new

entryAnd:0C#*¥un0Cn)#oop

So tradeoff w/ this approach :

Bad if many
Unions .

Better : Use trees !
(Galler + Fisher, 1964)

Each set
.

will
.

.be a rooted tree,
where elements are in the
tree is the root is the
canonical element .

So each element has a pointer
to its parent G root

points to itself) .

EI makeset Cx) - ④€④
makeset Cy) r

makeset (z)

um:%¥¥÷
makeset (b)
Union (a, X)
union (b , y) ⑧
makeset Cc)
Union CZ , b)

Implementation
-

:

Don't actually need pts ! Keep
a
"parent

"

array : veg
index pI value
O t a
1- I b
2 3 a

3 4 d

4 s e

s *←new root f
6 14 g
7 16 h
8 16 i

9 9 8
10 Q K
l! 2 e

-

-

I
- -

- *

9 10 11 12 130g # 15 11 17

U X

Implementton
-

:

f ifit
'

as ⇐it
""

OH x= p GI
return

Union:Cx, y) :
I = fnd Cx) ←

¥::'¥, j...
p GT = y

Still some flexibility : union by rank

① Need to decide which Foot

→ becomes the root of new

set : Le : union Cash) ¢
② Can also use

"pathcompre-sson.co
try to point as many
things to the root as possible,
so later queries get faster.
ie : find

E:

¥¥¥¥¥÷¥¥-
no

⑦ Unionbyrank :

(introduced several places)
Each time you union

,
make

smaller tree tree's root
the child of larger one .

How?
Teach node will have a

" rank " field
,
initialized

to 0 .

<In a union
'

.

If one's rank is smaller :

smaller
"points

" to

larger
If both are equal :
point one to other,
& increment new
root's rank

② Path compression :

During each And ,make every node
the path from x to

the root point to the
root :

Sos. AndCc) :
E:

②→⑤%→dD→②¥
⑤ ④Torino in ¥0

⑤ ⑨ ⑤⇐

Implantation :

And E) {
if pfe]== -I

return i

getsIpih#

§pCi$=fndlpED to
return pci] →

at:* .

o¥

Tor mahang the improvement
AmorhzedAndy
Worst case here :

SHI Od og
n) !

Why ?
Might get
tree of height log n

Hmortzedtnalyslsi
However

,
if we do mangy

And (or unions) , things get
faster .

E: Enid ¥887]
So: looking for averageruntime of one operation,
if doing many of them .

UF : size n

m finds

(Assume m
> > n)

Thnx: Any m find or union

operations run in time
occntm)lo#d .

#
??

Amortized cost of each :

0Clog*n)_
totally Npm))

not tiny
here!

(Next time)

login: = the number of
times you apply the logs
until the result is EI .

={¥g¥%÷ ?now

.it?z#E*2%6Eooo(2, 22] 2
(4,163 (22,22] 3
46,2*622 , 4

am,
'tis
"

. ? s
⇒

Facts we need
-

:

•Once a node stops being
a root

,
It will never

be a root again .

Wh consider unionsr finds
And : only changes parents,

stops
at root

Union : one
root becomes

a child .

- can be path
compressed , but nota

root
• Once not a root, a node's
rank never changes .

Why? Well
,
when does rank

get changed ?
hot in frid
in union , only changes
the end root

•Ranks are increasing in

any leaf - to - root path .

Froot : induction on time
(ie # of ops)

base case Singleton 1§- -
lndstep: consider tth
operation-either
makeset : one
To other root to

leaf paths change

÷:*
'

Lemmy : when a node gets
rank K, there are z 2K
items in its tree

.

Boffindiction on rant :

20=1

Now assume true for

anything er, & consider
the first time

rank -- r :

↳ must be a union ,
with two roots that
have

rank n-1

By IH ,
those each have

72
"

there are
2 of them .

k¥72.2
"
-

- I ④

Lemma : For any
r
,
there are at

-most E) %r objects with
rank r

. through entireexecution .

Froot '

. More induction !

r=0 rank O : I
events : Zo = n

rye : If a node v has

rank r :
we will "charge " it to
the two nodes ut v

of rank r-1 at
time of union .

After union , neither
can

Ker make another
rank r

node
.

So : if Ira at rank r-1,
then it takes 2

of rank r- I

to make one
of rank

r
.

7*1 ok
-- F

Side note :

worst case 1.og n :
n

g- at rank
r

.

⇒ highest rank ? log n
n

2=2/2/2
And so tree height(
canfbelag.ee#

Back to the log E n stuff:
Defy Tower Ci) = 222

"

"

freight :
so log: (TowerCi)) = ;

Define : Block(8) =
[Tower (e-Dtt ,Towel:))

Block (o) = So, I] (just ble)

Block (1) = [2, 23
Block (2) = E3, 4]
Block (3) = [5,16]
Block (47=97, 65536]
Block (5) ? [65,536, 265536J

a

.

Nowe. We know rant me
of And Cx) = length of x
to root path :

Let our path it =
X -- Xi
, PG) =Xz , pcxz)=Xz , . . .fm

-
-
root

IT:

x ,=×
.

-4K¥
"
-

→×m - root

-

Say a node y is in ith block

if rankly) E BlockCi)
In UF

, may rank of

any node is log n .

(so only okay;, lojnblocks

In these Blocks :

a
Xm Block E

:-#*m

i

T .

-

e - - -
-

-

.

I Blocked
.
-

X =x ,
Block

When we move Xk→ pcxk) ,
could stay in a block

(an internal jump)
or move to higher block

Ca jump between
blocks)

Lemmy: If x is an element
in Block(i) ,

at most

Blockley finds can pass
through it until it moves
to Block Litt) .

PI : what happens with
each And ?

path compression
!

Lemmy : At most tower Ci)
nodes have rank in Block Ci)
over entire algorithm .

¥ :
For rank r

,
know

⇐I
ar
elements .

at that rank .

Block Ci) = [Tower (E-DH, TowerCif
so :

NE2K
KE Block Ci)

= ⇐ Ek

=

Finally- :

The number of internal jumps
in ith block is Ocn)
(over entire set of m finds) .

Pt : . X in Block (i) can
have I Block I internal
jumps

• l Block / E tower
So # internal jumps I

The "

m operations on n

elements in U -F take
0((mth) log: h) total the .

PIther an operation is
OCD

,
or its runtime

is K L# internal jumps)
+ I#jumps blt

blocks)

internal jumps :

jumps blt blocks
:

