
Advanced Data Structures

Anon-find
Analysis

Today
- Questions on setup from

Last time ?
- Schedule has been updated -
Let me know if you see

any issues!
-Today : U -F analysis

Formally : 3 operations :

makesetCx) : take an item t create
a one element set for

- et
findCx) : return " canonical

"

element
of set containing X

union (x , y)
: Assuming that

X t y , form a new set that
is the union of the 2 sets holding
x -y , destroying the 2 old sets

.

(Also selects & returns a

canonical element for new set)

How to implement ?
- certainly use existing DS .

Use a table :

For each entry, record its
set label .

Ee :

table gets d
'
- c

-

-I ryembers
t e(i

.÷¥÷÷÷
""

1
-
-

e
-

-

-

4
$1 - -

8 * t
find → table lookup

Then : union (5,8) :
2 finds :

And G)
find (8)
loop to reset
all of one type

Runtme ? Wh
makeset : OG) Creek f new

entryAnd:0C#*¥un0Cn)#oop

So tradeoff w/ this approach :

Bad if many
Unions .

Better : Use trees !
(Galler + Fisher, 1964)

Each set
.

will
.

.be a rooted tree,
where elements are in the
tree is the root is the
canonical element .

So each element has a pointer
to its parent G root

points to itself) .

EI makeset Cx) - ④€④
makeset Cy) r

makeset (z)

um:%¥¥÷
makeset (b)
Union (a, X)
union (b , y) ⑧
makeset Cc)
Union CZ , b)

Then : matasetx) :

create a node w/ value X ,
& points its pointer to
itself

find'D :

travel up the the parent
pointer of x, until it
points to itself

Uhl0n(x
combine 2 trees into
a single tree by
making one of the roots
a child of the other
root

Largerexampte

¥⑤
-

18 elements
,
4 sets

And (g) so
And (e) of

Implementation
-

:

Don't actually need pts ! Keep
a
"parent

"

array : veg
index pI value
O t a
1- I b
2 3 a

3 4 d

4 s e

s *←new root f
6 14 g
7 16 h
8 16 i

9 9 8
10 Q K
l! 2 e

-

-

I
- -

- *

9 10 11 12 130g # 15 11 17

U X

Implementton
-

:

f ifit
'

as ⇐it
"er:*

ON x= p GI
return X

Union:(x, y) :
I = fnd Cx) ←

¥::'¥, j...
p GT = y

Still some flexibility : union by rank

① Need to decide which Foot

→ becomes the root of new

set : Le : union Cash) ¢
② Can also use

"pathcompre-sson.co
try to point as many
things to the root as possible,
so later queries get faster.
ie : find

E:

¥¥¥¥¥÷¥¥-
no

⑦ Unionbyrank :

(introduced several places)
Each time you union

,
make

smaller tree tree's root
the child of larger one .

How?
Teach node will have a

" rank " field
,
initialized

to 0 .

<In a union
'

.

If one's rank is smaller :

smaller
"points

" to

larger
If both are equal :
point one to other,
& increment new
root's rank

Rank only changes
for a root .

(Once a node is not
a root , it can never
become one again)

Lemmy : rank Cx) E rank(parentxD
(with equality only if

parentcxt-xf.PE÷4
'
'

a tree)of rank 't '
L

if ranker > 1 :

consider when incremented
from r -1 to r

←OH
T s

O

Thx : height of one of these
trees is 0Clog#

PI " Every time a node 's
leader has changed,
the set is at least

twice as big .

Why ?
,DD
Frank> rt frankrt
→o

ran

So : if n items in set,
how many

times could

it have doubled ?

log .sn J

→O
o at
O O

8%88
(Note : there are examples

which are Ragin)
in height.)
-

Result: Runtime are :
- makeset :

OCD

-And : travels a path
to root

Occogzn)
-union : 2 Grids toa) updates
⇒ 0dg.D

0dg n)

② Path compression :

During each And ,make every node
the path from x to

the root point to the
root :

nodes

X effshoon)

Soe. AndCc) :
E:

⑨→⑤¥→②¥
⑤ ④To' i

⑥¥9 ¥0no ⑨ ①←

find(r) :

Result If find takes a longtime
,
then later queries

get faster !

Implantation :

And Ci) {
if p fi] =

= -I

return i

g

e'sIpi#
G

to

oE

Tor mahang the improvement
AmorhzedAndy
Worst case here :

SHI Od og
n) !

Why ?
Might get
tree of height log n

Hmortzedtnalyslsi
However

,
if we do mangy

And (or unions) , things get
faster .

E: Enid ¥887]
So: looking for averageruntime of one operation,
if doing many of them .

UF : size n

m finds

(Assume m
> > n)

Thnx: Any m find or union

operations run in time
occntm)lo#d .

#
??

Amortized cost of each :

0Clog*n)_
totally Npm))

not tiny
here!

(Next time)

login: = the number of
times you apply the logs
until the result is EI .

={¥*÷
'

aerie

2%62000
(2, 22] 2

(4,163 (22,22] 3
HEEG" , 4

G
': Its

"

. ? s

Facts we need
-

:

•If x is not a root,
rank (x) crank Cp [xD

• When p GT changes , new
leader's rank gets bigger

• Size of a set rooted

pt. . X is Z 2
rankCx)

induction !

Bf: rank :

' rank r >0¥
Eaton

:

time
,
had two

of equal rank

Abe : For any
r
,
there are at

most nsr objects with
rank r

.

proot : Fx r .

Note
, only group leaders

can change rank Going up
by one)

.

So : when set leader changes
from rt to r

,
mark entire

set
.

How many
?

Leaders only increase, so
each object is marked only
once

⇒

Back to the log E n stuff:
Defy Tower Ci) = 222

"

"

freight :
so log: (TowerCi)) = ;

Define : Block(8) =
[Tower (e-Dtt ,Towel:))

Block (o) = So, I] (just ble)

Block (1) = [2, 23
Block (2) = E3, 4]
Block (3) = [5,16]
Block (47=97, 65536]
Block (5) ? [65,536, 265536J

a

.

Nowe. We know rant me
of And Cx) = length of x
to root path :

Let our path it =
X -- Xi
, PG) =Xz , pcxz)=Xz , . . .fm

-
-
root

IT:

x ,=×
.

-4K¥
"
-

→×m - root

-

Say a node y is in ith block

if rankly) E BlockCi)
In UF

, may rank of

any node is log n .

(so only okay;, lojnblocks

In these Blocks :

a
Xm Block E

:-#*m

i

T .

-

e - - -
-

-

.

I Blocked
.
-

X =x ,
Block

When we move Xk→ pcxk) ,
could stay in a block

(an internal jump)
or move to higher block

Ca jump between
blocks)

Lemmy: If x is an element
in Block(i) ,

at most

Blockley finds can pass
through it until it moves
to Block Litt) .

pt :

Lemmy : At most tower Ci)
nodes have rank in Block Ci)
over entire algorithm .

¥ :
For rank r

,
know

⇐I
ar
elements .

at that rank .

Block Ci) = [Tower (E-DH, TowerCif
so :

NE2K
KE Block Ci)

= ⇐ Ek

=

Finally- :

The number of internal jumps
in ith block is Ocn)
(over entire set of m finds) .

Pt : . X in Block (i) can
have I Block I internal
jumps

• l Block / E tower
So # internal jumps I

The "

m operations on n

elements in U -F take
0((mth) log: h) total the .

PIther an operation is
OCD

,
or its runtime

is K L# internal jumps)
+ I#jumps blt

blocks)

internal jumps :

jumps blt blocks
:

