
Advanced Data Structures

Intro
Union-End

today
- Overview of topic
-Syllabus :

- first data structure

Overview: Why ?
Data structures are useful !
Often just use existing ones -

but understanding trade -offs
is key .

I'm assuming you've
had an intro)

data structures Couse , as well as
an algorithms course .

Reason : Beyond those "simpler "
intro ones , things get tricky .

I want to emphasize :

- simple t elegant
- powerful
- useful

Next : syllabus !

(Boring but necessary)

First data structure :Unconfined
(Have any of you already seen it?)
Goat : keep track of a set of

objects that is divided into
some # of disjoint subsets,
where subsets may be merged .

Want to lqucddy) answer
queries about 2 objects being
in same subset (or partition) .

WhIntroduced in
' 61 by Aton ,Galler ←Graham
,
to track

variables t testing equivalence .

(Needed in Fortran .)

- Later : Minimum spanning
trees - grow disjointforest , until all in

one tree

Formally : 3 operations :

makesetCx) : take an item t create
a one element set for

- et
findCx) : return " canonical

"

element
of set containing X

union (x , y)
: Assuming that

X t y , form a new set that
is the union of the 2 sets holding
x -y , destroying the 2 old sets

.

(Also selects & returns a

canonical element for new set)

How to implement ?
- certainly use existing DS .

↳

Table :
Make an arrayHbk with

an entry
for each element, a label with
subset Id .

Ef : makeset Cx)
←

makeset Cy) ←
makeset (z)←
Union (x ,z) -
makeset (a) r
makeset (b) r
Union (a, X) r
Union (b , y)
makeset Cc)

I
2

Table "

¥q#¥¥a3-

Runtme ?

makeset : OG)

find : OG)

union : Ocn)

so tradeoff w/ this approach :

Bad if many
Unions .

Better : Use trees !
(Galler + Fisher, 1964)

Each set
.

will
.

.be a rooted tree,
where elements are in the
tree is the root is the
canonical element .

So each element has a pointer
to its parent G root

points to itself) .

EI makeset Cx) - ④€④
makeset Cy) r

makeset (z)

um:%¥¥÷
makeset (b)
Union (a, X)
union (b , y) ⑧
makeset Cc)
Union CZ , b)

Then : matasetx) :

create a node w/ value X ,
& points its pointer to
itself

find'D :

travel up the the parent
pointer of x, until it
points to itself

Uhl0n(x
combine 2 trees into
a single tree by
making one of the roots
a child of the other
root

