
Advanced Data Structures

skip Lists
t Scapegoat
Trees

Recap :

- HWI: partially done
,

posted by wed .

-Sub on Friday & next
Wednesday

(no class next Monday)

Neet: Skip listsBill Pugh , 1990)
An alternative to balanced

binary search trees .

Essentially , just a sorted list
where we add shortcuts .

-

but to speed up, we'll
duplicate some elements

.

For each item
, duplicate with

probability ta :

q
n

plus
#

Senhnat nodes

Searching : greet pk

p
down ptr

scan in top list .
If found , great !
Otherwise:

Look until next
element is too large

follow down ptr
a. scan lower list

Some probability!
Expectation : E (value) (probate)

values
possible

¥: 6 sided dice

E-[value) -- f -1 tf .2
+f. 3 t - - tf . 6

F- 3.5

Each node is copied with prob=L,
Eff nodes in top] = %

worst case exp . #comp .
in top is 42

Goal : Bound expected #
of comparisons

Prob [a node is follow by k
without duplicates)
= EoE = 'T.

So : Expected [* comparisons
in lower test]

= III.tatty
t.at#=Zz-k
£2

Keo

⇒ expect ¥+2 comparisons
-

What next? Kearse!

To search :

How many
levels ?

-
well , Ef size

at level i]
= tzefsize at

level it]

So Gntuihely) :
Ollogn) rankine

Each time we add a level
,

Ef# searches]
goes down by at.

Moreton?
See posted holes!
(Assumes some probability..)

BYE :

what is the " best " one? q

Recap : ④ If,-

↳
Search : start at root
- if u = -- target

return yes
else if Ed target

recourse leftinset:eberearserg€
while cu has children)
if X EV

go
left

else
go right

Delete :

*
a D
O

o
'

O' ¥E¥ee
I '③

D#④
-Find next node on

in order travel

Datastmdwesckss
-

" Vanilla" Bst (no rotations
or balancing)

Runtme : Ocn)

How can it get this bad?

"

%¥
n

.

.

Bstrees: !.gg#ynfZRotahon/p-votyyO--heeghtCDH
unbalanced : left (or right)

is too big- AVL trees 2- want
-Red-Black treeslhlehzthktdluoaog.nl

Toddy : - scapegoat Trees
This -splayTreesweek

Terminology I'll assume :
-search key
- node
- lefty ht child , parent
- internal/ leaf node
-root
- ancestordescendant
- preorder, inorder, postorder

Recap:

.

- HeightG) : distance to
furthest leaf in v 's
sub tree

-Depth (v) : distance from
v to the root

-Size (v) : # of nodes is
V's subtree

ScapegoatTrees-
[Anderson ' 89

, Galperin -Rivest
'93]

Supports amortized Clogn) .
Basic idea :

-Standard BST search

- Delete : mark
"deleted " node

.

When tree is half

dis'd:
rebuildingperfect

Runtime
-

:

claim
!
rebuild a

perfect tree in
linear time

⇒ amortized time

And insert
-

:

standard insert

But : if imbalanced,
rebuild a subtree .

Containing new
leaf

Dfe: Fx any 2>2 .

A node in imbalanced
if height G) > alg(size

*
so here :

O

→← rose

Let : IG) =
Tax{ 0 ,

Is redeftcuD-qzegrght.luD
Ex: ①

←size 100

if t

O O

Lemma :

just before rebuilding at v,
Icu)=RCn)

proofs:
If imbalanced

,
h (v) > 41g sizeCD)

(by dfn of imbalanced)
but left) - rightCv)
were not imbalanced :

h (leftCv)) E

wig
:

hlrghtf.DE
Assume insert on left; so :

→

Some intense math :

So : takeaway
Icu)= MCsread

This means
~sizeCD insertions

since the last rebuilding . .

So : rebuild ! How?

Several ways to do this
in OCSRea)) the .

(Hw question !)

Claim: EI tree rebuild
for each insertion

pt dov
i

↳Z

Final runtime
-

:

Rudi

Delete :

Insert .
-

