Advanced Data Structures Homework 2 Spring 2020

Advanced Data Structures
Homework 2

For this homework, you are welcome to use the internet and discuss the problems with others in
the class - in fact, I highly encourage this! However, you must write up your own solutions, with NO
verbatim copying of other’s work. As a general rule, I’d suggest re-writing your solution without
looking at any notes from your meetings or webpages, after you understand the solution. If you
significantly used any online source, you must also include a reference to that website. Verbatim
copying of any webpage will result in a 0 on the homework - use the internet to understand the
solution, but ALWAYS rewrite in your own works while NOT looking at the page. (Note that I've
googled all of these, so I have a pretty good idea of what’s out there...)

I highly recommend using latex for typsetting your entire homework, but I'll accept it hand-
written on a case by case basis.

Required Problems

1. Tarjan has shown that, given any splay tree containing the keys 1...n, if we search for the
keys 1...n in order then the total cost of all searches is O(n). Show how this implies that,
given any two binary trees 77 and 7> each on n nodes, the tree 77 can be converted into the
tree Ty using O(n) rotations.

2. Describe a priority queue that has the working set property. That is, insertions should take
O(1) amortized time and, if a call to DeleteMin() deletes the element z, then this should
take O(logt(x)) time, where t(x) is the number of elements in the priority queue that were
inserted after x was inserted. Thus, if we use this priority queue like a stack, the insertions
and deletions (pushes and pops) will take constant amortized time.

3. For problem 3, you have two options, so select one of the following to answer:

(a)

Short essay/lit search question: Investigate a useful implementation of some variant of
B-trees or van Emde Boas trees, in a database system, a file system, or some other real
world application, and tell me about it. Some questions to get you started: What is
the exact variant of B- or VEB-trees used (B+, B*, etc), and how does it differ from
the classical versions we discussed in class? How is it implemented (i. e. what language,
what underlying hardware assumptions, or any other interesting aspects you find)? Why
do they use that particular variant, and how does it affect the overall efficiency of that
implementation? Write an essay summarizing your findings (again 500-ish words, with
at least several reputable references).

More hands on: Go read the following webpages about binary search tradeoffs in mem-
ory layout: http://cglab.ca/~morin/misc/arraylayout/ and its followup, as well as the
associated paper: https://arxiv.org/abs/1509.05053. Download the tests and run them
on your machine, and summarize your own findings. Do they match his results, or agree
with earlier work on this, i.e/https://dl.acm.org/doi/10.5555/545381.5453867 Write up
your results (again 500-ish words), and summarize why there are differences such as this
in efficiency between studies. (You're welcome to find other studies, but these should
get you started!)


http://cglab.ca/~morin/misc/arraylayout/
https://arxiv.org/abs/1509.05053
https://dl.acm.org/doi/10.5555/545381.545386

