FIRST and FOLLOW sets

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.

- 1. If *X* is a terminal, then $FIRST(X) = \{X\}$
- 2. If *X* is a nonterminal, and FIRST(*X*) = $Y_1Y_2 \dots Y_n$ is a production rule, then
 - everything in $FIRST(Y_1)$ is in FIRST(X)
 - if $Y_1 \rightarrow \epsilon$ contains, then everything in FIRST(Y_2) is also in FIRST(X)
 - repeat for $Y_2 \rightarrow \epsilon$, and so on...
- 3. If $X \to \epsilon$, then add ϵ to FIRST(X)

To compute FOLLOW(*A*) for all nonterminals *A*, apply the following rules until nothing can be added to any FOLLOW set.

- 1. Place \$ in FOLLOW(*S*), where *S* is the start symbol, and \$ is the input right end-marker (i.e. end of the program code).
- 2. If there is a production rule $X \to \alpha A\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(A)
- 3. If there is a production rule $X \to \alpha A$, or a production $X \to \alpha A\beta$ where FIRST(β) contains ϵ , then everything in FOLLOW(X) is in FOLLOW(A)

Given our LL grammar:

 $S \rightarrow E$ $E \rightarrow TE'$ $E' \rightarrow +TE' \mid -TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid /FT' \mid \epsilon$ $F \rightarrow (E) \mid id$

Compute the FIRST sets:

- $FIRST(F) = \{ (, id \} \}$
- FIRST $(T') = \{ *, /, \epsilon \}$
- $FIRST(T) = FIRST(F) = \{ (, id \} \}$
- $FIRST(E') = \{+, -, \epsilon\}$
- $FIRST(E) = FIRST(T) = \{ (, id \} \}$
- $FIRST(S) = FIRST(E) = \{ (, id \} \}$

Compute the FOLLOW sets:

- FOLLOW(S) = { \$ }
- FOLLOW(E) = {) } U FOLLOW(S) = {), \$ }
- FOLLOW(E') = FOLLOW(E) = { }, \$ }
- FOLLOW(T) = FIRST(E') \cup FOLLOW(E/E') = { +, -,), \$ }
- FOLLOW(T') = FOLLOW(T) = { +, -,), \$ }
- FOLLOW(F) = FIRST(T') \cup FOLLOW(T/T') = { *, /, +, -,), \$ }

Generate the predictive parsing table, $M[A, \alpha]$, (for LL grammars) from the FIRST/FOLLOW sets.

For each production rule $A \rightarrow \alpha$ of the grammar, do the following:

- 1. For each terminal *a* in FIRST(*A*), add $A \rightarrow \alpha$ to M[A, a]
- 2. If ϵ is in FIRST(α), then for each terminal *b* in FOLLOW(*A*), add $A \rightarrow \alpha$ to M[A, b].
- 3. Every other entry in the parsing table, M[A, a], implicitly generates an **error**

Non-	Input Symbol							
Terminal	id	+	-	*	/	()	\$
S	$S \rightarrow E$					$S \rightarrow E$		
Ε	$E \rightarrow TE'$					$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \epsilon$	$E' \to \epsilon$
Т	$T \rightarrow FT'$							
Τ'				$T' \rightarrow * FT'$	$T' \rightarrow /FT'$		$T' \to \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow \mathbf{id}$							