FIRST and FOLLOW sets

To compute FIRST(X) for all grammar symbols X, apply the following rules until no
more terminals or € can be added to any FIRST set.

1. If Xis a terminal, then FIRST(X) = {X}
2. If Xis a nonterminal, and FIRST(X) = Y;Y, ... Y, is a production rule, then

e everything in FIRST(Y;) is in FIRST(X)
e ifY; > € contains, then everything in FIRST(Y,) is also in FIRST(X)
e repeatforY, — € and so on...

3. IfX - ¢, then add € to FIRST(X)

To compute FOLLOW(A) for all nonterminals 4, apply the following rules until
nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right
end-marker (i.e. end of the program code).

2. Ifthereis a production rule X — aAp, then everything in FIRST(B) except €
is in FOLLOW(A)

3. Ifthereis a production rule X = a4, or a production X — aAf where
FIRST(p) contains ¢, then everything in FOLLOW(X) is in FOLLOW(A4)

Given our LL grammar:
S > E
E - TE'
E' - +TE'"| -TE' | €
T - FT'
T'-> «FT' | /FT' | €
F - (E) | id

Compute the FIRST sets:

FIRST(F) = { (, id }

FIRST(T) = { *, /, €}
FIRST(T) = FIRST(F) = { (, id }
FIRST(E) = {+, — €}
FIRST(E) = FIRST(T) = { (, id }
FIRST(S) = FIRST(E) = { (, id }

Compute the FOLLOW sets:

FOLLOW(S) = { $ }
FOLLOW(E) = {) } U FOLLOW(S) =1{), $}
FOLLOW(E') = FOLLOW(E) = {), $}

FOLLOW(T) = FIRST(E') U FOLLOW(E/E)={+ -), $}
FOLLOW(T") = FOLLOW(T) = { +, —,), $}
FOLLOW(F) = FIRST(T") v FOLLOW(T/T") ={=* / + —) $}

Generate the predictive parsing table, M[A, «], (for LL grammars) from the
FIRST/FOLLOW sets.

For each production rule A — «a of the grammar, do the following:

1. For each terminal a in FIRST(4),add 4 —» a to M[A4, a]
2. Ifeisin FIRST(«), then for each terminal b in FOLLOW(A),add A — a to
MI[A, b].
3. Every other entry in the parsing table, M[A, a], implicitly generates an error
Non- Input Symbol
Terminal id |+ - T 7 T C Ty T s
S S—->E S—->F
I E>TE E>TE
E’ E' > +TE' E' - -TE' E'—>¢€ E'>¢€
T T > FT’
T T'->xFT' T'—/FT' T'>¢€ T' > ¢
F F —id

