
FIRST	and	FOLLOW	sets	
	

	
To	compute	FIRST(𝑋)	for	all	grammar	symbols	X,	apply	the	following	rules	until	no	
more	terminals	or	𝜖	can	be	added	to	any	FIRST	set.	
	

1. If	X	is	a	terminal,	then	FIRST 𝑋 = 𝑋 	
	

2. If	X	is	a	nonterminal,	and	FIRST 𝑋 = 𝑌,𝑌- …𝑌/	is	a	production	rule,	then	
	

• everything	in	FIRST 𝑌, 	is	in	FIRST 𝑋 	
• if	𝑌, → 𝜖	contains,	then	everything	in	FIRST 𝑌- 	is	also	in	FIRST 𝑋 	
• repeat	for	𝑌- → 𝜖,	and	so	on…	

	
3. If	𝑋 → 𝜖,	then	add	𝜖	to	FIRST 𝑋 	

	
	
To	compute	FOLLOW(𝐴)	for	all	nonterminals	A,	apply	the	following	rules	until	
nothing	can	be	added	to	any	FOLLOW	set.	
	

1. Place	$	in	FOLLOW 𝑆 ,	where	S	is	the	start	symbol,	and	$	is	the	input	right	
end-marker	(i.e.	end	of	the	program	code).	
	

2. If	there	is	a	production	rule	𝑋 → 𝛼𝐴𝛽,	then	everything	in	FIRST 𝛽 	except	𝜖	
is	in	FOLLOW 𝐴 	

	
3. If	there	is	a	production	rule	𝑋 → 𝛼𝐴,	or	a	production	𝑋 → 𝛼𝐴𝛽	where	

FIRST 𝛽 	contains	𝜖,	then	everything	in	FOLLOW 𝑋 	is	in	FOLLOW 𝐴 	
	
	
Given	our	LL	grammar:	

𝑆	 → 	𝐸	
𝐸	 → 	𝑇𝐸′		
𝐸< → 	+𝑇𝐸<	 	−𝑇𝐸<		 		𝜖		
𝑇	 → 	𝐹𝑇′		
𝑇′ →		∗ 𝐹𝑇<		 		/	𝐹𝑇<		 		𝜖		
𝐹	 → 	 𝐸 		|		𝐢𝐝	

	
Compute	the	FIRST	sets:	

• FIRST 𝐹 = 	 		(, 𝐢𝐝		 	
• FIRST 𝑇′ = 	 		∗	, /, 𝜖	 	
• FIRST 𝑇 = 	FIRST 𝐹 = 	 		(, 𝐢𝐝		 	
• FIRST 𝐸′ = 	 	+	, −, 𝜖	 	
• FIRST 𝐸 = 	FIRST 𝑇 	= 	 		(, 𝐢𝐝		 	
• FIRST 𝑆 = 	FIRST 𝐸 	= 	 		(, 𝐢𝐝		 	



Compute	the	FOLLOW	sets:	
• FOLLOW 𝑆 = 	 		$		 	
• FOLLOW 𝐸 =	 		)		 		∪ 		FOLLOW 𝑆 	= 	 		), $		 	
• FOLLOW 𝐸′ = 	FOLLOW 𝐸 =	 		), $		 	
• FOLLOW 𝑇 = 	FIRST 𝐸′ 		∪ 		FOLLOW 𝐸/𝐸′ = 	 		+, −, ), $		 	
• FOLLOW 𝑇′ = 	FOLLOW 𝑇 =	 		+, −, ), $		 	
• FOLLOW 𝐹 = 	FIRST 𝑇′ 	∪ 		FOLLOW 𝑇/𝑇′ 	= 	 		∗, /, +, −, ), $		 	

	
	

Generate	the	predictive	parsing	table,	𝑀 𝐴, 𝛼 ,	(for	LL	grammars)	from	the	
FIRST/FOLLOW	sets.	
	
For	each	production	rule	𝐴 → 𝛼	of	the	grammar,	do	the	following:	
	

1. For	each	terminal	𝑎	in	FIRST 𝐴 ,	add	𝐴 → 𝛼	to	𝑀 𝐴, 𝑎 	
	

2. If	𝜖	is	in	FIRST 𝛼 ,	then	for	each	terminal	b	in	FOLLOW 𝐴 ,	add	𝐴 → 𝛼	to	
𝑀 𝐴, 𝑏 .	
	

3. Every	other	entry	in	the	parsing	table,	𝑀 𝐴, 𝑎 ,	implicitly	generates	an	error	
	

	
Non-
Terminal	

Input	Symbol	
id	 +	 -	 *	 /	 (	 )	 $	

S	 𝑆 → 𝐸	 	 	 	 	 𝑆 → 𝐸	 	 	
E	 𝐸 → 𝑇𝐸′	 	 	 	 	 𝐸 → 𝑇𝐸′	 	 	
E’	 	 𝐸< → +𝑇𝐸′	 𝐸< → −𝑇𝐸′	 	 	 	 𝐸< → 𝜖	 𝐸< → 𝜖	
T	 𝑇 → 𝐹𝑇′	 	 	 	 	 	 	 	
T’	 	 	 	 𝑇< →∗ 𝐹𝑇′	 𝑇< →/𝐹𝑇′	 	 𝑇< → 𝜖	 𝑇< → 𝜖	
F	 𝐹 → 𝐢𝐝	 	 	 	 	 	 	 	

	


