
LL
parsing example
(Conclusion)

Reaps
. HW on flex due tomorrow via get

• Office hours Thursday :

Il - hoon

(not noon
- 1pm)

I'm also around after class

today .

• Next Hw : over

parsing
/CFGs .

Lasttme
One simple yet useful GFG

class : LL ALL token of

← T look - ahead

left-to-right leftmost
derivation

Meaning : Keep current partial)
parsing ,

as well as

input string.

Algorithm : Look at leftmost
non terminal and next
token in input string .

Use these to determine
which rule to apply .

(If more than I choice
, try one

,[
Bu .

& if stuck , back up - try next .)

Keg: I datable to

help make decision

FIRST t FOLLOW Sets

:(
for LLC)) :

-
FIRST (TJ ANY string of non - terminals

Atom nets

a. = set of possible first
terminals in any

derivation
of a by the grammar

So :

D if x is a terminal
,

FIRST (x):{X }
2) if Xtc is a production ,

add E to FIRST

3) If X is a non terminal :

If X→ Y
,
Ya . . .

Ya is a production :

•

Everything in FIRSTLY ,) is in FIRST (X)
• add a if a is in FIRST (Yi) and

E Is in FIRSTLY, I ,
. . .

,
FIRST Hit)

• add E if E Is in FIRSTLY
,),

. . .

FIRST CYK)

E :

EIEEi
E ' → TTE ' / c

' ⇒* .] :&::
F → (E) I id

gran

FIRST G) = { C
,

id }
FIRST (E) = { C

,
id }

FIRST (E) = Et
,

E 3
net 's

FIRST IT) = E C id 3

FIRST ft
') = { * ,E3

FIRST CF) = { C
,

id 3

Follow Sets :
-

(We'll assume any input ends in

$, just to have an

end of Ale
"

character)
Rules :

Fut $ in Follow (s) ✓

where S is start symbol .

2) Given a production :

A →④it
everything in FIRST goes

in FOLLOW (B)
(except E ,

if it is there) .

3) ' Given a production:
A → AB

or

A→#
with EE FIRST

then everything in FOLLOW (A)
also goes In FOLLOW (B)

S
→

E
.

←

E :

EE
E ' Ic ←

-

T → FT
' ✓

T
'

→ *

FF
' IE

#
F → (E) / id *

a

ftp.hffs#hfEdsICE)--FiRSTfT)=FiRSTfF

)
= EC ,

id }
FIRST (E

') = EI ,
E3

FIRST IT ') =EE,
E) .

Sfifouowcs

) = E
.¥t ?

FOLLOW (E) = { ,
)

,
#

, $3
FOLLOW (E) = { *

,
$

FOLLOW (T) -
- E*

,
$¥ Follow CTD= E * ,
$

Follow (F) = { * 1$

Try again
: SEIEE '

E' →

FTE
'

I E
T →

FF
'

T
.

→ *

EI
.

I E

F → C E) I id

FIRST G) = FIRST (E) = FIRST (T)
= FIRST (F) = { C

, id }
FIRST (T ') = E *

, E3
FIRST C E ' J = { t

, E)

FOLLOW G) = { $ }
FOLLOW LE) = {) ,

$ }
FOLLOW CE ') = {) ,

$ 3
FOLLOW (T) = E t

,
)

,
$ }

FOLLOW (T
') =

Et
,

)
, $ 3

Follow CF) -
- E *

,
t

,
)

, $ }

Then
,

the Table : M :

For any production Xx
,

do

A) for each terminal a in

FIRST
,

add

X→x to MIA ,
a]

2) If E is in FIRST (a) ,add X → a to MEAD
for each terminal b in

FOLLOW (A) .

If E is in FIRST G) and
$ is in FOLLOW (A) ,
add A → a to MEA , $3 .

Any other entries are

errors .

(conduct on board)

End result :

Inputs
Nonlermind t * C 3 $

.

ISS→E S→E

¥:/:÷f⇐+¥¥÷f÷¥.

T
' THE T 's * FT

'

TEETHE

F

f-
 →

idf
I F → (E)

Then :parsc
Action Matched

s¥÷¥j1
on board

(check schedule

page)

Runtime :

One more example-

A grammar
for lists

'D
tap les :

. S
.

→ 5$

S → (L) I id

L → L
,

S kid

Ex : (a
,

Cb , d) §
Derivation :

-

Problem :

LL version i Same trick as before

S
'

→ s $

s → CL) I id

L → SL
"

L "
→

,
SL

' le

FIRST & FOLLOW Sets :

Table FIRST FOLLOW
- -

-

s
. c

,
id $

S C
,

id { , $ a) 3

L (, id J
L

'

, .
E)

[
Comma

{I ,§
Follow

E

Follow
CD

(Note : a can 't be in follow sets !

growth
"

Recall: To generate table :

① For each terminal in

FIRST CA) ,
add A → a

to MEA ,
a]

② If EE FIRST A) , Then for
each b in FOLLOW CA)

,
add A → a in MEA ,

b]

In ours
, E

.

in FIRST (L
')

Only thing in FOLLOW (L
') is)

③ Any blanks become errors
.

Tabkiskey ! Tells it how
to parse .

Oartabk :

m¥y¥Ee#¥÷⇐t÷t

said: which 5%1194
table

Matched stack Input Acton
5$ la

,
Cb ,cD$ uses 'S

5$
'

Remember
-

:

This whole approach is just
to " automate "

parsing .

LL is a simple yet
powerful - fast class .

