
More parsing

today:

- HW due Thursday
C via gt)

Lasttime
- More parsing

: C FGs
.

•

removing ambiguity Correagnizing)
•

eliminating left recursion

↳set of rules to apply
to get rid . Of LR

S → x AB

Goal :

parse (apply prod .

rules)
until all non - terminals

(which means it is valid)

or until stuck
↳ invalid

Back to the practical .

.

-

- Any CFG can be parsed
↳ Chomsky Normal Form

CYK algorithm
Run Ame : Off) "

n

This is too slow !

Most modern parsers look
for certain restricted
families of CFGS

.

Result : 2 main families :

→

LI
: more limited

,
faster

LI : more general ,
slower

Both '
. Ocn) parsers

¥Deft
to right parsing

④eft most derivation

Anything accepted by this typeof
parser is called

an LL grammar .

Really .

Leftto right :

on input string , try
to force a rule to

recognize
leftmost

terminal first

Leftmost der :

if nontrm
, try to

resolve left one

first

Topdownpars.in#forLLs

)
Called predictive parsing .

worlggsammwgf.mu#0scanwIn*tne

Table based in practice

SHE:

S→qAd/qAa/cAAAA →ableParse£a€¥
Ruka:p,

.is#aes4usninTs-EAd

one matches the -

cbmaofttndIITEteoe-scab.MX

is a mistake) →

cads
$

✓

Note : Left recursion is

very
bad on these !

A → Ab la

A
a-b

At
'
b

A

IA-y"X never mateus an

input or hits a

conflict

So never forced to
backtrack

.

How predictive parsing works :

- the input string w is in an

input
buffer

.

- Scan I

dater
at a

time
,

& guess which

tow?
" k should match

- Construct a predictive
parsing table for G

.

- If
you canmatch a

terminal
,

do it

k move to next
character)

- otherwise
,

look in table for
rule to get transition
that will eventuallymatch

Hodpart :

• build the table !

(need to decide a transition
if at a non terminal

bagoedm.no?pthenextinputs)

UK
k tokens to decide

(we'll just do LLCD)

Algorithm to construct table :

- Based upon listing
' ' first "

&
" follow " sets for each

non - terminal
.

(Essentially ,
these will encode

our predictors .)

FIRST t FOLLOW Sets

:(
for LLC)) :

-
FIRST (TJ ANY Shing of non - terminals

Atom nets

a. = set of possible first
terminals in any

derivation
of a by the grammar

So :

D if x is a terminal
,

FIRST (x):{X }
2) if Xtc is a production ,

add E to FIRST

3) If X is a nom terminal :

If X→ Y
,

Yo . .

Ya is a production :

If a is in FIRST (Ye) andadd a

g is in FIRSTLY, I ,
. . .

,
FIRST Hit)

add E if E Is in FIRSTLY
,),

. . .

FIRST CYK)

E :

Este
E ' → TTE ' / c

T → FT
'

T
'

→*FT '

I E

F → (E) / id
FIRST G) = { C

,
id }

FIRST (E) = { C
,

id }
FIRST (E) = Et

,
E 3

NEAT

FIRST IT) = E C id 3

FIRST ft
') = { * ,E3

FIRST CF) = { C
,

id 3

Follow Sets :
-

(We'll assume any input ends in

$, just to have an

end of Ale
"

character)
Rules :

Fut $ in Follow (s) ✓

where S is start symbol .

2) Given a production :

A →④it
everything in FIRST goes

in FOLLOW (B)
(except E ,

if it is there) .

3) ' Given a production:
A → AB

or

A→#
with EE FIRST

then everything in FOLLOW (A)
also goes In FOLLOW (B)

S
→

Ets

←

E :

EE
E ' Ic ←

-

T → FT
' ✓

T
'

→ *

FF
' IE

#
F → (E) / id *

We ¥YEds÷ (E) = FIRST f) = FIRST (F)
= EC ,

id 3
FIRST (E

') = EI ,
E3

FIRST IT ') = {¥,
E)

Sfi Follow CD = E$3
FOLLOW (E) =

Et
,

)
,

#
, $3

FOLLOW (E) = { *
,
$

FOLLOW (T) -
- E*

,
$

FOLLOW C T
') = { * ,

$
Follow (F) = { * , $

Then
,

the Table : M : (Next
For any production Xx

,

d.
time)

He) for each terminal a in

FIRST
,

add

X→x to MIA ,
a]

2) If E is in FIRST (a) ,add X → a to MEAD
for each terminal b in

FOLLOW (A) .

If E is in FIRST G) and
$ is in FOLLOW (A) ,
add A → a to MEA , $3 .

Any other entries are

errors .

(conduct on board)

End result :

Inputs
Nonlermnal + * C) $

F-E E→TE ' E→TE '

¥.fm#fIItIf.*ft*ifIIfIII
F F→id F→€)

Then :pvsc=
Action Matched

s¥¥f¥÷¥iy|

