
CS3200: Programming Languages Homework 9 Spring 2017

CS3200: Programming Languages
Homework 8: data types and functors in Haskell

Required Problems

For this assignment, you’re going to define a new type of list, called a Stream. This will duplicate
a lot that you can do with lists, but will enforce that any Stream must be infinite. (The usual list
type represents lists that may be infinite but may also have some finite length.)

In particular, in our implementation, streams will only have one constructor, whereas the list
type has two constructors, [] (the empty list) and (:) (cons). In our setup, there is no such thing
as an empty stream. So a stream is simply defined as an element followed by another stream:

data Stream a = Cons a (Stream a)

1. Write a function to convert a Stream to an infinite list:

streamToList :: Stream a -> [a]

2. To test your Stream functions in the succeeding exercises, it will be useful to have an instance
of Show for Stream s. However, if you put deriving Show after your definition of Stream, as
one usually does, the resulting instance will try to print an entire Stream, which, of course,
will never finish. Instead, make your own instance of Show for Stream:

instance Show a => Show (Stream a) where

show...

which works by showing only some prefix of a stream (say, the first 20 elements).

3. Write a function:

streamRepeat :: a -> Stream a

which generates a stream containing infinitely many copies of the given element.

4. Make your Stream be an instance of Functor (as we did with binary trees in class), so that it
applies an input function to every element in the Stream.

5. Write a function

streamIterate :: (a -> a) -> a -> Stream a

which generates a Stream from a “seed” of type a, which is the first element of the stream,
and an “unfolding rule” that is a function taking an element of type a to another element of
type a which specifies how to transform the seed into a new seed, to be used for generating
the rest of the stream.

Example:

1



CS3200: Programming Languages Homework 9 Spring 2017

streamIterate (’x’ :) "o" == ["o", "xo", "xxo", "xxxo", "xxxxo", ...

6. Write a function

streamInterleave :: Stream a -> Stream a -> Stream a

which interleaves the elements from 2 Streams. You will want streamInterleave to be lazy in
its second parameter. This means that you should not deconstruct the second Stream in the
function.

Example:

streamInterleave (streamRepeat 0) (streamRepeat 1) ==

[0, 1, 0, 1, 0, 1, ...

7. Now that we have some tools for working with streams, let’s create a few:

Define the stream

nats :: Stream Integer

which contains the infinite list of natural numbers 0, 1, 2,...

Define the stream

powersoftwo :: Stream Integer

which corresponds to the powers of 2: 1, 2, 4, 8, 16, 32, 64, 128, . . . , where the nth element
in the stream is equal to 2n.

Define the stream

triangular :: Stream Integer

which corresponds to the triangular numbers: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, . . . , where the
nth element in the stream is equal to n(n+1)

2 .

8. Extra credit: Modify your Stream class so it is also of type Applicative, and define < ∗ >
appropriately.

2


