
Week 1: Introduction to C++

Department of Computer Science
Saint Louis University

CSCI 2100 Data Structures

2CSCI 2100

Syllabus
● Announcements
§ Syllabus (Please read in detail!!)
§ Lab on Fridays

3CSCI 2100

Resources for this class

● Data Structures and Algorithms in C++ (Second Edition) Michael
T. Goodrich, Roberto Tamassia and David M. Mount John Wiley &
Sons, 2011. ISBN-13 978-0-470-38327-8.

● A Transition Guide from Python 2.x to C++ by Dr. Goldwasser
and Dr. Letscher.

● www.cplusplus.com

● Tutoring and office hours

http://www.cplusplus.com

4CSCI 2100

Introduction to Data Structures

Students studying in the old DuBourg library reading room, 1958

“Bad programmers worry about the code. Good
programmers worry about data structures and
their relationships.”

Linus Torvalds *

* The creator, and historically, the principal developer of the Linux kernel.

5CSCI 2100

The Need for Data Structures

● Data structures organize data, allowing more efficient
programs.

● Applications complexity increases with computation
power; demand more calculations.

● Complex computing tasks are unlike our everyday
experience.

A data structure is a way to store and organize data
in a program, so that it can be used efficiently.

6CSCI 2100

Efficiency

● A solution is said to be efficient if it solves the problem within its
resource limits.

ØSpace
ØTime

● The cost of a solution is the amount of resources that the
solution consumes.

7CSCI 2100

Abstract Data Types
An abstract data type (ADT) is a type whose behavior is
defined by a set of values and a set of operations.
It is about what operations are to be performed but not
how these operations will be implemented.
It is called “abstract” because it gives an implementation
independent view.

Advantages:
● Encapsulation: Hide implementation details.
● Localization of change: Changing ADT does not

change the code.

8CSCI 2100

Terminology examples

● Supporting push, pop, size, and empty operations.
● Stacks can be implemented using arrays and linked list.
● Class template using std::stack.

Stacks are a type of container
adaptor, specifically designed to
operate in a LIFO context.

9CSCI 2100

C++
● In 1979, Bjarne Stroustrup, a Danish computer scientist, began

work on "C with Classes", the predecessor to C++

● In 1983, "C with Classes" was renamed to "C++" (++ being the
increment operator in C), adding new features

● It has imperative, object-oriented and generic programming
features, while also providing facilities for low-level memory
manipulation.

10CSCI 2100

Python vs C++

• High level
– Readable

• Dynamically typed
• Industrial strength for rapid

development
• Interpreted

• Low level
– Close to machine code

• Statically typed
• Useful for performance

intensive tasks
• Compiled

Source
Code Interpreter Output

Input

Source
Code Compiler Exec.

Code

Input

Output

11CSCI 2100

Why learn C++?
● Faster - Python is about 10 to 100 times slower as compared to

C++

● More control over your resources such as memory

12CSCI 2100

Comparison

13CSCI 2100

White Space
● Returns, tabs, etc. are ignored in C++

● Recall that these were very import in Python
● Here, we use () and {} to mark loops, Booleans, etc.

14CSCI 2100

Compiling

● In Python, you save code as gcd.py and then type “python
gcd.py” to run it

● In C++:
§ Save as gcd.cpp
§ Type “g++ -o gcd gcd.cpp”
§ Type “./gcd”
§ You can also compile as a simple as “g++ gcd.cpp”, then it saves

executable as a.out. Then type “./a.out”.
§ Filename extensions for C++ are (a) .cc, (b) .cpp, (c) .cxx, (d) .c++, (e) .h,

(f) .hh, (g) .hpp, (h) .hxx, and (i) .h++.

15CSCI 2100

Data Types
The precise number of bits devoted to these types is system-dependent,
with typical values shown as below.

Recap Python2.x data types at https://docs.python.org/2/library/stdtypes.html

https://docs.python.org/2/library/stdtypes.html

16CSCI 2100

Data Types
● Integers can also be unsigned (non-negative numbers)
§ Signed Int: from -(2b-1) to +(2b-1-1)
§ Unsigned Int: from 0 to +(2b-1)

● C++ also supports two different floating-point types, float and
double, with a double historically represented using twice as
many bits as a float.

● In C++, the double is most commonly used and akin to what is
named float in Python.

● Finally, we note that Python’s long type serves a completely
different purpose, representing integers with unlimited magnitude.
There is no such standard type in C++.

17CSCI 2100

Character strings
● The char type provides an efficient representation of a single

character of text, while the string class serves a purpose similar
to Python’s str class, representing a sequence of characters (an
empty string or a single-character string).

string uses double quote
"a"

char uses single quote
'a'

To distinguish between a char and a one-character string:

18CSCI 2100

Character strings
● The string class is not a built-in type; it must be included from

among the standard C++ libraries.

char a;
a = ‘a’;
a = ‘h’;

#include <string>
using namespace std;

string word;
word = “CS2100”

19CSCI 2100

String class: non-mutating behaviors

20CSCI 2100

String class: mutating behaviors

21CSCI 2100

Arrays
● The standard structure for storing a mutable sequence of values

in Python is the list class.

● C++ also supports a more low-level sequence, known as an
array, which has its origin in the C programming language.

● What makes an array different from a structure such as a Python
list is that the size of the array must be fixed when the array is
constructed and that the contents of the array must have the
same data type.

22CSCI 2100

Declarations and Initialization

4. DATA TYPES AND OPERATORS Page 14

We can initialize multiple variables of a common type in a single declarations, as in

int age(42), zipcode(63103); // two new variables

Although we noted that declared variables of primitive types are not automatically initial-
ized, a declared variable of a class type will be initialized by automatically invoking a form of that
class’s constructor. Using the string class as an example, consider the following three declarations.

string response; // guaranteed to be the empty string ””
string greeting("Hello"); // initialized to ”Hello”
string rating(3, A); // initialized to ”AAA”

The first version invokes what is known as the default constructor for the class. This is a zero-
parameter version of the constructor, which in the case of strings produces an empty string. The sec-
ond of these lines formally invokes the constructor with a single parameter, the character sequence
"Hello". The third example invokes a two-parameter form of the string constructor, resulting in
a sequence of n consecutive copies of a given character.

Arrays

If the desired size of an array is known at compile time, it can be declared using a syntax such as

double measurements[300];

This declares the name measurements to be an array of doubles and causes the system to allocate
memory for storing precisely 300 entries. However, the values of the individual entries are indeter-
minate (just as when declaring a single double). Typically, the declaration of such an array might
be followed by a loop to initialize the entries to meaningful values. Yet it is possible to initialize
values of an array as part of the declaration, using a syntax such as the following.

int daysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Notice that we did not explicitly give the size of the array between the square brackets; it will be
implicitly set based on the number of indicated entries. If we had given an explicit size for the
array that was larger than the indicated initialization list, the beginning of the array will be filled
in using the specified values and the rest is set to zero. In the special case of an array of characters,
it is possible to initialize the array using a literal, as follows.

char greeting[] = "Hello";

As a technicality, this becomes an array with size 6 because all C-style character sequences are
explicitly terminated with an extra zero-value to designate the end of the sequence.

In the case of class types, the declaration of an array causes not only the allocation of memory
but the default initialization of each individual entry. For example, in the following declaration all
entries of the array are guaranteed to be initialized to empty strings.

string messages[20];

Thus far, our declarations have assumed that the size of an array is known at compile time. An
approach for dynamically allocating arrays at run-time will be presented in Section 8.5.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

23CSCI 2100

Mutability
● Python offers a list class for representing mutable sequences,

and a tuple class for representing immutable sequences.

● In C++, all types are assumed to be mutable, but particular
instances can be designated as immutable by the programmer.

● Syntactically, the immutability is declared using the keyword
const in specific contexts.

24CSCI 2100

Operators

25CSCI 2100

Converting between types

● There are similar settings in which C++ implicitly casts a value to
another type.

● Be careful!

● Converting with strings will be discussed soon.

int a(5);
double b;
b = a; // sets b to 5.0

int a(4), b(3);
double c;
c = a/b; // sets c to 1.0
c = double(a)/b // sets c to 1.33

26CSCI 2100

Control Structures

● C++ has loops, conditionals, functions, and objects.

● Syntax is similar, but just different enough to get into trouble.

● Remembers to use cplusplus.com or the transition guide.

27CSCI 2100

While Loop

● Notes:
§ bool is any boolean expression.
§ Don’t need {} if only one command in the loop.

while (bool)
{

body;
}

int x(20);
while (x<0)

x = x-5;
cout << x;

Careful!!

int x(20);
while (x<0)

x = x-5;
cout << x;

28CSCI 2100

Conditionals
if(bool) {

body1;
}
else {

body2;
}

● Notes: No elif

29CSCI 2100

For Loops
1. Initialization

2. Loop condition

3. Update

Note: int declaration isn’t required if the variable was already declared before.

5. CONTROL STRUCTURES Page 20

C++ treats this as two separate operations, evaluated from right-to-left, as if written as

a = (b = 4.0);

So b is assigned the value 4.0, and then the new value of b serves as the result of the parenthesized
subexpression. This allows a to be subsequently assigned.

To avoid such a common pitfall, Python disallows use of an assignment statement in the context
of a conditional. Code such as if (gpa = 4.0) results in a syntax error. Python support the chaining
syntax a = b = 4.0 using a different mechanism, just as it does with inequalities like a < b < c.

5.4 For Loops

C++ supports a for loop, but with very different semantics than Python’s. The style dates back to
its existence in C, to provide a more legible form of the typical index-based loop pattern described
in Chapter 4.1.1 of our book. An example of a loop used to count downward from 10 to 1 is as
follows:

for (int count = 10; count > 0; count−−)
cout << count << endl;

cout << "Blastoff!" << endl;

Within the parentheses of the for loop are three distinct components, each separated by a semicolon.
The first is an initialization step that is performed once, before the loop begins. The second portion
is a loop condition that is treated just as a loop condition for a while loop; the condition is tested
before each iteration, with the loop continuing while true. Finally we give an update statement that
is performed automatically at the end of each completed iteration. The for loop syntax is just a
convenient alternative to a while loop that better highlights the logic in some cases. The previous
example is essentially identical in behavior to the following version:

int count = 10; // initialization step
while (count > 0) { // loop condition

cout << count << endl;
count−−; // update statement

}
cout << "Blastoff!" << endl;

The for loop is far more general. It is possible to express multiple initialization or update steps
in a for loop. This is done by using commas to separate the individual statements (as opposed to
the semicolon that delimits the three different components of the syntax). For example, the sum
of the values from 1 to 10 could be computed by maintaining two different variables as follows:

int count, total;
for (count = 1, total = 0; count <= 10; count++)

total += count;

It is also possible to omit the initialization or update steps, so long as the semicolons remain as
separators. The loop condition is the only strictly required component.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

5. CONTROL STRUCTURES Page 20

C++ treats this as two separate operations, evaluated from right-to-left, as if written as

a = (b = 4.0);

So b is assigned the value 4.0, and then the new value of b serves as the result of the parenthesized
subexpression. This allows a to be subsequently assigned.

To avoid such a common pitfall, Python disallows use of an assignment statement in the context
of a conditional. Code such as if (gpa = 4.0) results in a syntax error. Python support the chaining
syntax a = b = 4.0 using a different mechanism, just as it does with inequalities like a < b < c.

5.4 For Loops

C++ supports a for loop, but with very different semantics than Python’s. The style dates back to
its existence in C, to provide a more legible form of the typical index-based loop pattern described
in Chapter 4.1.1 of our book. An example of a loop used to count downward from 10 to 1 is as
follows:

for (int count = 10; count > 0; count−−)
cout << count << endl;

cout << "Blastoff!" << endl;

Within the parentheses of the for loop are three distinct components, each separated by a semicolon.
The first is an initialization step that is performed once, before the loop begins. The second portion
is a loop condition that is treated just as a loop condition for a while loop; the condition is tested
before each iteration, with the loop continuing while true. Finally we give an update statement that
is performed automatically at the end of each completed iteration. The for loop syntax is just a
convenient alternative to a while loop that better highlights the logic in some cases. The previous
example is essentially identical in behavior to the following version:

int count = 10; // initialization step
while (count > 0) { // loop condition

cout << count << endl;
count−−; // update statement

}
cout << "Blastoff!" << endl;

The for loop is far more general. It is possible to express multiple initialization or update steps
in a for loop. This is done by using commas to separate the individual statements (as opposed to
the semicolon that delimits the three different components of the syntax). For example, the sum
of the values from 1 to 10 could be computed by maintaining two different variables as follows:

int count, total;
for (count = 1, total = 0; count <= 10; count++)

total += count;

It is also possible to omit the initialization or update steps, so long as the semicolons remain as
separators. The loop condition is the only strictly required component.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

30CSCI 2100

Increment / Decrement Operators

● What’s the results?

31CSCI 2100

Defining a Function
● Every C++ program has at least one function, which is main(),

and most of the trivial programs can define additional functions.

Defining a Function

The general form of a C++ function definition is as follows:

A C++ function definition consists of a function header and a function body.

Return Type − A function may return a value. The return type is the data type of the value the function
returns. Some functions perform the desired operations without returning a value. In this case, the return
type is the keyword void.

return_type function_name(parameter list) {
body of the function

}

32CSCI 2100

Defining a Function
// function returning the max between two numbers
int max(int num1, int num2) {

// local variable declaration
int result;

if (num1 > num2)
result = num1;

else
result = num2;

return result;
}

33CSCI 2100

Calling a Function
// function returning the max between two numbers
int max(int num1, int num2) {

// local variable declaration
int result;

if (num1 > num2)
result = num1;

else
result = num2;

return result;
}

int main () {
// local variable declaration:
int a = 100;
int b = 200;
int ret;

// calling a function to get max value.
ret = max(a, b);
cout << "Max value is : " << ret << endl;

return 0;
}

34CSCI 2100

Function Declaration

A function declaration tells the compiler about a function name and
how to call the function. The actual body of the function can be
defined separately.

A function declaration (signature) has the following parts

Example:

Function declaration is required when you define a function in one
source file and you call that function in another file.

return_type function_name(parameter list);

int max(int num1, int num2);

35CSCI 2100

Function Optional Parameters

countdown(5,2): form 5 to 2

countdown(8): from 8 to 1

countdown(): from 10 to 1

36CSCI 2100

Input and Output
● Necessary libraries
§ Technically, streams are not automatically available in C++. Rather, they

are included from one of the standard libraries.

Optional

37CSCI 2100

Input and Output
● The cout identifier represents a special output stream used to

display information to the user console.

● The << symbol is an operator for inserting data into that output
stream.

● We use the cin object to read input from the user console.

● The >> operator is used to extract information from the stream
into a variable.

38CSCI 2100

Output

Formatting

This command would result in the output pi is 3.142.

39CSCI 2100

Console Input

● Notes:
§ inputs are separated by any white space
§ type of input must match type of variable

40CSCI 2100

Console Input

● Problem:

§ After executing the C++ code, the variable person will be assigned the
string "John", while the subsequent characters (" Smith\n") remain on the
stream.

● getline() : function to save the string up to the next new line

What is your name? John Smith

41CSCI 2100

Tricky Input Example

The problem is that after executing the above code, the variable food will be set to the empty
string "".

How to solve this problem? Add a line “cin.ignore();” after “cin >> age;”

42CSCI 2100

File Streams
If the name of an existing file is known:

If the name of an existing file is unknown:

Note: Writing a file default: overwrite.
To append:

43CSCI 2100

String Streams
● Casting between numbers and strings

44CSCI 2100

Error Checking with Input Streams
6. INPUT AND OUTPUT Page 27

1 number = 0;
2 while (number < 1 || number > 10) {
3 cout << "Enter a number from 1 to 10: ";
4 cin >> number;
5 if (cin.fail()) {
6 cout << "That is not a valid integer." << endl;
7 cin.clear(); // clear the failed state
8 cin.ignore(std::numeric limits<int>::max(), \n); // remove errant characters from line
9 } else if (cin.eof()) {

10 cout << "Reached the end of the input stream" << endl;
11 cout << "We will choose for you." << endl;
12 number = 7;
13 } else if (cin.bad()) {
14 cout << "The input stream had fatal failure" << endl;
15 cout << "We will choose for you." << endl;
16 number = 7;
17 } else if (number < 1 || number > 10) {
18 cout << "Your number must be from 1 to 10" << endl;
19 }
20 }

Figure 8: Robust error-checking with input streams.

If the filename is not known in advance, the stream can be initially declared without a filename
and opened as a later operation. The open method accepts the filename as a parameter but, for
historical reasons, requires that the name be expressed as a C-style string. Here is an example usage:

ifstream mydata;
string filename;
cout << "What file? ";
cin >> filename;
mydata.open(filename.c str()); // parameter to open must be a C−style string

The same techniques can be used with an ofstream instance for writing to a file. By default,
opening an ofstream causes the target file to be overwritten by a new file, just as with Python’s
open(scores.txt , w). If you want to append to the end of an existing file, as with Python’s
open(scores.txt , a), the C++ command is

ofstream datastream("scores.txt", ios::app);

The more general fstream class can be used to simultaneously manage input and output from
the same file, although coordinating such manipulations takes more care.

6.6 String Streams

We have seen how cin and cout manage the console and how the file streams are used to manage
files. All of the stream operators offer convenient support for reading or writing formatted data.
As an example, if we have an integer age, the command cout << age converts the integer into the

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

