CS 2100

(remove o Nousekaping) Kecap - HWS posted - Zybook - We do have lab next week- but - No class next Friday - Next week: readings on both Monday & Wednesday

end of Lists ercse: /** Function to erase a node * Parameter: an iterator to the node we wish to delete * Returns an iterator to the next node in the list */ iterator erase(iterator position) { //make some temporaries - temp stores return value, p is just readability Node* next = position._current->_next; Node* p = position. current; //error check if (empty()) throw domain error("can't remove from an empty list"); if ((p == NULL) | (p == _sent)) throw runtime error("not a valid iterator to remove"); position._current->_next->_previous = position._current->_previous; position_current->_previous->_next = position._current->_next; delete position. current; size--; return iterator(next); position. current

House keeping:

Destructor:

While (!empty())

Kuntines Insert + delete: O(1) operator EJ: O(n)

(on HW!)

Code:
(5) go compile!

Next: Searching!
Given a value x of data Structure S, output true if x is in S.
Often also want an iterator to the value, or an index (if array-based).
Two ways:
- Linear search - Binary search Lo Sorted list!

Coding of runtimes: Linear Search: -You've actually done the code for this (or nearly have) in both Shinked List & Vector! A simple loop to run through -return true if ever found (or iterator/location) -return take of not found yectors: O(n) <u>Lists</u>: O(n)

Birary Search: to middle in dok structure. Compare X Value x > middle Treasse on right half x < middle recuse on left etse return true $B(n) = 1 + B(\frac{1}{2})$ -1+1+B(4)= 1+1+1+B(8) = O(logzn)

Can't do efficient binary Search on lin ked Structure: $B(n) = O(n) + B(\frac{n}{2})$ = O(n)