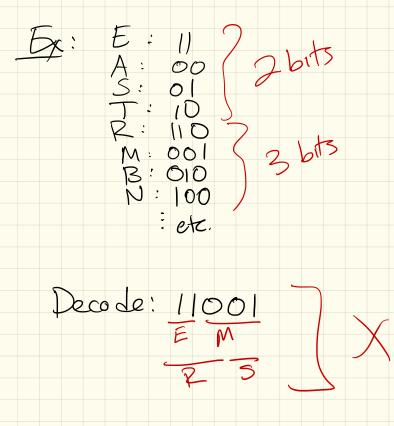


Huffman codes

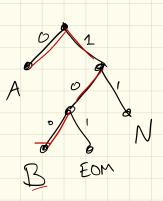
Kecap

Lab due Sunday 2 Reading for Zybook -check (ater today (Graphs) Next HW is posted

Final exam: Wed at 2pm 5 Lost day of class: review session

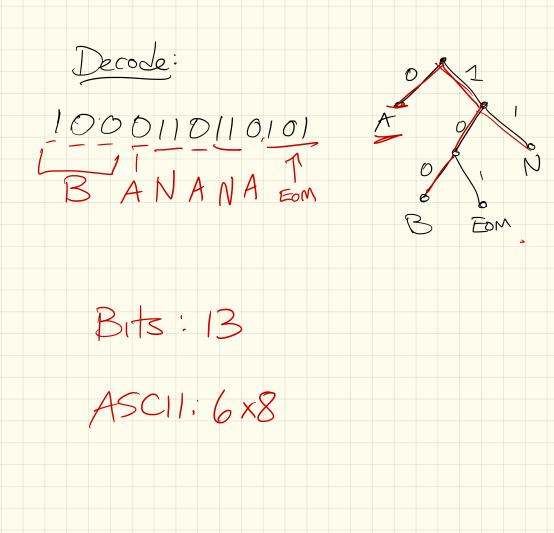

Huffman Codes - the idea:

We would like to transmit into using as few bits as possible. What does ASCII do? 8-bit rep. of letters 5256 characters X letters => 8x bits


How can we do better? Lowell, what if we don't use all the characters? fewer than 8 bits G shorter

use lever bits for more common letters

Froblem ! If not fixed length, herd to tell when a character 15 finished.


Prefix-free codes

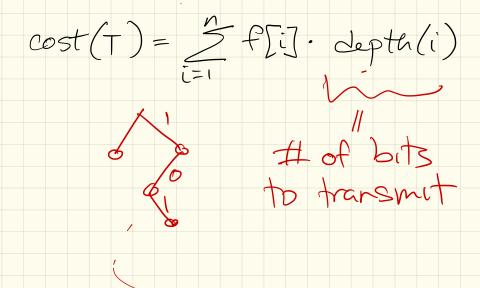
An unambiguous way to send information when we have characters not of a fixed length.

Key: No letter's code will be the prefix of another.

Encode: BAN 100011

How Should we do this! Use frequency counts to indee a good prefix-free code (or tree):

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y's, and only one z.


lower frequency = more bits L> lower in tree higher frequency = fewer bits C> higher in tree

Gool: Minimize Cost

6 here, minimize total length of encoded message:

Input: Prequency counts f[1:07]

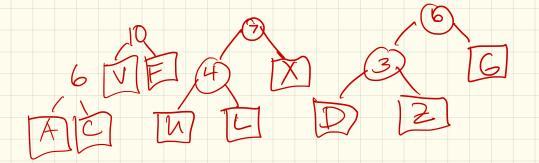
Compute. tree with minimum "cost"

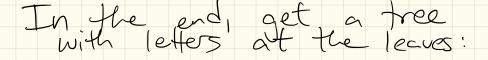
To do this, we'll need to use the array f:

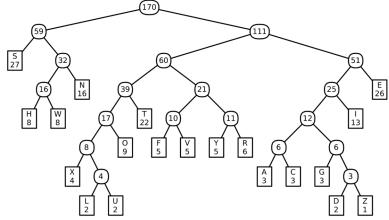
This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y's, and only one z.

If we ignore punctuation of spaces (just to keep it simple), we get:

Ι Ν R S 26 5 3 8 13 2 6 16 9 27 22 2


Which letters should [over)?


(ie: How to be greedy?)


Huffman's alg: Take the two least frequent characters. Merge them in to one letter, which becomes a new "leaf": Ε С D F Н S Х G Ι Ν 0 R U 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 Ν Х А С Е G Н Ι 0 R S Т W Y Ľ 5 3 26 13 2 16 6 27 5 8 4 3 3 5 3 8 9 22 2

Example (cont):
 E
 V
 H
 I
 V
 N
 0
 R
 S
 T

 26
 /5
 /2
 /8
 13
 /2
 16
 9
 6
 27
 22
W 8 X 4 Y 5 DZ Z

A Huffman code for Lee Sallows' self-descriptive sentence; the numbers are frequencies for merged characters

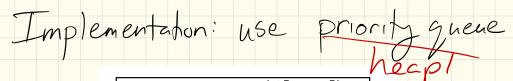
Α	C	D	E	F	G	Н	I	L	Ν	0	R	S	Т	U	۷	W	Х	Y	Ζ
3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1

If we use this code, the encoded message starts like this:

1001	0100	1101	00	00	111	011	1001	 	 		20002	 	110000	
Т	Н	I	S	S	Е	Ν	Т	 		С		 		

How many bits?

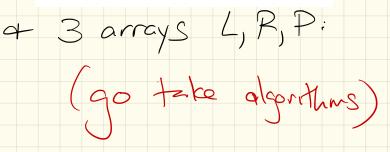
char.	Α	С	D	Е	F	G	н	Ι	L	Ν	0	R	S	Т	U	V	W	Х	Y	Z
freq.	3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1
depth	6	6	7	3	5	6	4	4	7	3	4	4	2	4	7	5	4	6	5	7
total	18	18	14	78	25	18	32	52	14	48	36	24	54	88	14	25	32	24	25	7


∑f[i]·depth(i) Total IS = 646 bits here

How would ASCII do on these 170 letters 570+8

Thm: Hutfman codes are optimal: they use the ferrest # of bits possible.

Pf: (go take 3100)


Side note: This is known as greedy algorithm.

 $\frac{\text{BuildHuffman}(f[1..n]):}{\text{for } i \leftarrow 1 \text{ to } n}$ $L[i] \leftarrow 0; \ R[i] \leftarrow 0$ Insert(i, f[i])

for $i \leftarrow n$ to 2n - 1 $x \leftarrow \text{EXTRACTMIN}()$ $y \leftarrow \text{EXTRACTMIN}()$ $f[i] \leftarrow f[x] + f[y]$ $L[i] \leftarrow x; R[i] \leftarrow y$ $P[x] \leftarrow i; P[y] \leftarrow i$ INSERT(i, f[i])

$$P[2n-1] \leftarrow 0$$

Next HW:

decode:

Given an input which describes atree of a message: 1) Create the tree 2) Use it to decode the message. One thing I skipped! do need to store the pree.

Overview of ossignment ...