
1CSCI 2100

STL Containers
● Sequence Containers – store sequences of 

values
§ vector, deque, list

● Container Adapters – specialized interfaces to 
general containers
§ stack, queue, priority_queue

● Associative Containers – use “keys” to access 
data rather than position (Account #, ID, SSN, …)
§ map
§ Multimap
§ set
§ multiset



2CSCI 2100

Associative Containers
● Similar to vector & list – other storage structures 

with operations to access & modify elements.

● Stores elements based on a key.

● Key can consist of one or more attributes to 
uniquely identify each element (we will assume 
only one attribute).

● Example:  Department of Motor Vehicles (DMV) 
uses license-plate # to identify a vehicle.

● Main difference is that an associative container 
uses the key rather than an index (vector) or 
linear search (list) to retrieve an element.



3CSCI 2100

Associative Containers: unordered_map
● Stores a set of (key, value) pairs

● Each key has one value

● Implemented as a hash table
#include <unordered_map>
//define it with
//keys of type string
//and values of int
Unordered_map<string, int> um;

● Fast insert and delete
um[“Fred”] = 99;
insert, erase

�Fred� | 99

�Sue� | 86

�James� | 52

�Alice� | 71

�Bob� | 45

http://www.cplusplus.com/reference/unordered_map/unordered_map/

http://www.cplusplus.com/reference/unordered_map/unordered_map/


4CSCI 2100

● An STL map is implemented as a tree-structure, 
where each node holds a “pair”.

● Most important to know when retrieving data 
from the table
• Some functions return the pair, not just the value

● A pair has two fields, first (holding the key) and 
second (holding the value)

STL Unordered_map: Data Storage



5CSCI 2100

● If you have a pair object, you can use the 
following code to print the key and value:
cout << myPairObject.first << “ “ <<       

myPairObject.second;

● If you have a pointer to the pair object, use the 
arrow operator instead
cout << myPairObject->first << “ “ << 

myPairObject->second;

STL Unordered_map: Data Storage



6CSCI 2100

STL Unordered_map: Data Storage
● Access element at
§ Returns a reference to the mapped value of the element identified with 

key k.
§ If k does not match the key of any element in the container, the function 

throws an out_of_range exception.

● Access element []
§ If k matches the key of an element in the container, the function returns a 

reference to its mapped value.
§ If k does not match the key of any element in the container, the function 

inserts a new element with that key and returns a reference to its 
mapped value. 



7CSCI 2100

unordered_map.cpp
#include <iostream> 
#include <unordered_map> 
using namespace std; 

int main() 
{ 

// Declaring umap to be of <string, int> type 
// key will be of string type and mapped value will 
// be of double type 
unordered_map<string, int> umap; 

// inserting values by using [] operator 
umap[“Fred”] = 99; 
umap[“Sue”] = 86; 
umap[“Bob”] = 45; 

// Traversing an unordered map 
unordered_map<string, int>:: iterator itr;
for (itr = umap.begin(); itr != umap.end(); itr++) {

cout << itr->first << " " << itr->second << endl; 

} 



8CSCI 2100

What is a Hash Table ?

• Think about it as a Dictionary with <key,value> pairs.
• The simplest kind of hash table is an array of records.
• This example has 701 records.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

An array of records

. . .

[ 700][ 6 ]



9CSCI 2100

What is a Hash Table ?
• Each record has a special field, 

called its key.

• In this example, the key is a long 
integer field called Number.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

. . .

[ 700]

[ 4 ]

Number  506643548



10CSCI 2100

What is a Hash Table ?
• The number might be a person's 

identification number, and the rest 
of the record has information about 
the person.

• Where do we place a new entry?

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

. . .

[ 700]

[ 4 ]

Number  506643548



11CSCI 2100

What is a Hash Table ?
• When a hash table is in use, some spots contain valid 

records, and other spots are "empty".

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .



12CSCI 2100

Inserting a New Record
• In order to insert a new record, the 

key must somehow be converted to 
an array index.

• The index is called the hash value of 
the key.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .

Number 580625685

How can this conversion happen?



13CSCI 2100

Hash Function



14CSCI 2100

Inserting a New Record
• Typical way create a hash value:

(Number mod 701) 

What is (580625685 mod 701)  ?

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .

Number 580625685



15CSCI 2100

Inserting a New Record

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .

• Typical way create a hash value:

(Number mod 701) 

What is (580625685 mod 701)  ?

Number 580625685

3



16CSCI 2100

Inserting a New Record
• The hash value is used for the 

location of the new record.
Number 580625685

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

3



17CSCI 2100

Inserting a New Record

. . .

• The hash value is used for the location of the new record.

• Do you see any problem?

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685



18CSCI 2100

• Here is another new record to insert, 
with a hash value of 2.

. . .

My hash
value is [2].

Number 701466868

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685

Another Insertion



19CSCI 2100

Collisions
• This is called a collision, because there 

is already another valid record at [2].

. . .

When a collision occurs,
move forward until you

find an empty spot.

Number 701466868

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685



20CSCI 2100

Collisions
• This is called a collision, because there 

is already another valid record at [2].

. . .

When a collision occurs,
move forward until you

find an empty spot.

Number 701466868

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685



21CSCI 2100

Collisions
• This is called a collision, because there 

is already another valid record at [2].

. . .

When a collision occurs,
move forward until you

find an empty spot.

Number 701466868

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685



22CSCI 2100

Collisions
• This is called a collision, because there 

is already another valid record at [2].

. . .

The new record goes in the empty spot.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685 Number 701466868



23CSCI 2100

Searching for a Key
• The data that's attached to a key can 

be found fairly quickly. Number 701466868

. . .

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685 Number 701466868



24CSCI 2100

Searching for a Key
• Calculate the hash value.

• Check that location of the 
array for the key.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Not me.

Number 701466868

My hash
value is [2].



25CSCI 2100

Searching for a Key
• Keep moving forward until you find 

the key, or you reach an empty spot.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Not me.

Number 701466868

My hash
value is [2].



26CSCI 2100

Searching for a Key
• Keep moving forward until you find 

the key, or you reach an empty spot.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Not me.

Number 701466868

My hash
value is [2].



27CSCI 2100

Searching for a Key
• When the item is found, the 

information can be copied to the 
necessary location.

• What if you reach an empty spot 
or the end of array?

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Yes!

Number 701466868

My hash
value is [2].



28CSCI 2100

Deleting a Record
• Records may also be deleted from a hash table.

. . .

Please
delete me.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    506643548Number    233667136Number 281942902 Number 155778322Number 580625685 Number 701466868



29CSCI 2100

Deleting a Record
• Records may also be deleted from a hash table.
• But the location must not be left as an ordinary "empty 

spot" since that could interfere with searches.

. . .

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    233667136Number 281942902 Number 155778322Number 580625685 Number 701466868



30CSCI 2100

Deleting a Record

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
Number    233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

• Records may also be deleted from a hash table.
• But the location must not be left as an ordinary "empty 

spot" since that could interfere with searches.
• The location must be marked in some special way so that a 

search can tell that the spot used to have something in it.



31CSCI 2100

List based Hash Table

Can we do better?



32CSCI 2100

Hash Map
● Implement Hash Map
§ Hash function just returns the remainder when the key is divided by the 

hash table size.
§ Hash entry (node) has key and value structure.
§ In addition, the class contains search(key) function to access mapped 

value by key, insert(key,value) function to put key-value pair in table and 
remove(key) function to remove hash node by key. 

§ For collision resolution, separate chaining strategy could be used.



33CSCI 2100

Map Methods
Delegate operations to a list-based map at each cell:
Algorithm search(k):
Output: The value of the key k or null

bucket = h(k)
return A[bucket].search(k) {delegate the search to the list-based map at A[h(k)]}

Algorithm insert(k,v):
bucket = h(k)
t = A[bucket].insert(k,v) 
n = n + 1
return t {delegate the put to the list-based map at A[h(k)]}

Algorithm remove(k):
bucket = h(k)
A[bucket].remove(k)       
n = n – 1 {delegate the remove to the list-based map at A[h(k)]}



34CSCI 2100

Implement Simple Hash Map: testHashMap.cpp



35CSCI 2100



36CSCI 2100

Double Hashing

Double hashing is a collision resolving technique in open addressed hash 
tables. Double hashing uses the idea of applying a second hash function to 
key when a collision occurs.

Double hashing can be done using:

(hash1(key) + i * hash2(key)) % TABLE_SIZE

First hash function is typically: hash1(key) = key % TABLE_SIZE
Second hash function can be: hash2(key) = PRIME – (key %PRIME) where 
PRIME is a prime smaller than the TABLE_SIZE.



37CSCI 2100

Double Hashing



38CSCI 2100

Good Hash Function
● A hash function is perfect if it maps items to buckets with no collisions. 

● The number of items and all keys should be known to design a perfect 
hashing that results in constant complexity for insert, search, and remove 
operations. 

https://emn178.github.io/online-tools/sha256.html

Perfect hashing function

Minimal perfect hashing function

https://emn178.github.io/online-tools/sha256.html


39CSCI 2100

Bloom filter

A space-efficient data structure designed to tell you, rapidly and memory-
efficiently, whether an element is present in a set or not with high probability.



40CSCI 2100

Storing user passwords

Hashing is used extensively in computer 
security:

Authentication
Signature
Storing password
Blockchain


