STL Containers

e Sequence Containers - store sequences of
values

= vector, deque, list

e Container Adapters - specialized interfaces to
general containers
= stack, queue, priority_queue

e Associative Containers - use “keys” to access
data rather than position (Account #, ID, SSN, ...)

= map
= Multimap
= set

= multiset

CSCI 2100 1 SAINT LOUIS UNIVERSITY.

Associative Containers

e Similar to vector & list - other storage structures
with operations to access & modify elements.

e Stores elements based on a key.

e Key can consist of one or more attributes to
uniquely identify each element (we will assume
only one attribute).

e Example: Department of Motor Vehicles (DMV)
uses license-plate # to identify a vehicle.

e Main difference is that an associative container
uses the key rather than an index (vector) or
linear search (list) to retrieve an element.

CSCI 2100 2 SAINT LOUIS (13| UNIVER SITY.

Associative Containers: unordered map

e Stores a set of (key, value) pairs
e Each key has one value
e Implemented as a hash table

#include <unordered map>

//define 1t with

//keys of type string Fred” | 99

//and values of 1int “Alice” | 71

Unordered map<string, int> um;

_ “Sue” | 86
e Fast insert and delete

um[“Fred”] = 99,

insert, erase

http://www.cplusplus.com/reference/unordered map/unordered map/

CSCI 2100 3 SAINT LOUIS UNIVERSITY.

http://www.cplusplus.com/reference/unordered_map/unordered_map/

STL Unordered map: Data Storage

e An STL map is implemented as a tree-structure,
where each node holds a “pair”.

e Most important to know when retrieving data
from the table

« Some functions return the pair, not just the value

e A pair has two fields, 7/rst (holding the key) and
second (holding the value)

CSCI 2100 4 SAINT LOUIS (13| UNIVER SITY.

STL Unordered map: Data Storage

e If you have a pair object, you can use the
following code to print the key and value:

cout << myPairObject.first << W W KL
myPairObject.second;

e If you have a pointer to the pair object, use the
arrow operator instead

cout << myPailirObject->first << " %W <KL
myPalirObject->second;

CSCI 2100 5 SAINT LOUIS UNIVERSITY.

STL Unordered map: Data Storage

e Access element at

= Returns a reference to the mapped value of the element identified with
key k.

= |fk does not match the key of any element in the container, the function
throws an out_of_range exception.

e Access element []

= |f k matches the key of an element in the container, the function returns a
reference to its mapped value.

= |fk does not match the key of any element in the container, the function
inserts a new element with that key and returns a reference to its
mapped value.

CSCI 2100 6 SAINT LOUIS UNIVERSITY.

unordered map.cpp

#include <iostream>
#include <unordered_map>
using namespace std;

int main()

{

// Declaring umap to be of <string, int> type

// key will be of string type and mapped value will

// be of double type

unordered map<string, int> umap;

// inserting values by using [] operator

umap[“Fred”] = 99;

umap[“Sue”] = 86;

umap[“Bob”] = 45;

// Traversing an unordered map

unordered map<string, int>:: iterator itr;

for (itr = umap.begin(); itr != umap.end(); itr++) {

cout << itr->first << " " << itr->second << endl;

}

CSCI 2100 7 SAINT LOUIS UNIVERSITY.

What is a Hash Table ?

la mh

* Think about 1t as a Dictionary with <key,value> pairs.

la mh

* The simplest kind of hash table is an array of records.

* This example has 701 records.

(0] [11 [2] [3] [4] [5] [6] [700]

An array of records

CSCI 2100 8 SAINT LOUIS UNIVERSITY.

What is a Hash Table ?

* Each record has a special field, [4]
called its key.

* In this example, the key 1s a long
integer field called Number.

[0] [1] [2] [3]

CSCI 2100 9 SAINT LOUIS [fal®]| UNIVERSITY.

What is a Hash Table ?

 The number might be a person's [4]
1dentification number, and the rest
of the record has information about
the person.

* Where do we place a new entry?

[0] [1] [2] [3]

CSCI 2100 0 saINTLOUIS |[q]p] UNIVERSITY.

What is a Hash Table ?

* When a hash table is 1n use, some spots contain valid
records, and other spots are "empty".

[0] [1] [2] [3] [4] [39] [700]

WS

CSCI 2100 11 SAINT LOUIS UNIVERSITY.

Inserting a New Record

* In order to insert a new record, the
key must somehow be converted to
an array index.

580625685

 The index i1s called the hash value of
the key.

[0] [1] [2] [3] [4] [3] [700]

Z.‘) By I @,
A 5P e LI |)\
- 7‘ "’ --.

How can this conversion happen?

CSCI 2100 12 SAINT LOUIS UNIVERSITY.

Hash Function

hash
keys function hashes
: 00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee '
15

CSCI 2100 13 SAINT LOUIS UNIVERSITY.

Inserting a New Record

* Typical way create a hash value:

580625685

(Number mod 701)
What is (580625685 mod 701) ?

[0] [1] [2] [3] [4] [3] [700]

',!"v = g [I I |
N
: : £

CSCI 2100 14 SAINT LOUIS UNIVERSITY.

Inserting a New Record

* Typical way create a hash value:

580625685

(Number mod 701)
What is (580625685 mod 701) ?

[0] [1] [2] [3] [4] [3]

',!"v = g [I I |
N
: : £

CSCI 2100 15 SAINT LOUIS UNIVERSITY.

Inserting a New Record

® The hash VahlG iS used fOI’ the 580625685
location of the new record.

CSCI 2100 16 SAINT LOUIS UNIVERSITY.

Inserting a New Record

* The hash value 1s used for the location of the new record.

* Do you see any problem?

[0] [1] [2] [3] [4] [3] [700]

e >* @
- 7‘ ’:‘ .. | - .

CSCI 2100 17 SAINT LOUIS UNIVERSITY.

Another Insertion

e Here 1s another new record to insert,
with a hash value of 2.

701466868

[0] [2] [3] [4] [5] [700]

:.T) o 1) B &

CSCI 2100 18 SAINT LOUIS UNIVERSITY.

* This 1s called a collision, because there

1s already another valid record at [2]. 701466868
-
[0] [1] [2] [3] [4] [9] [700]

,‘\ = A & [I I | @,
EBER S e
4

CSCI 2100 19 SAINT LOUIS UNIVERSITY.

* This 1s called a collision, because there
1s already another valid record at [2]. 701466868

[700]

CSCI 2100 20 SAINT LOUIS UNIVERSITY.

* This 1s called a collision, because there

1s already another valid record at [2]. 701466868
-
[0] [1] [2] [3] [4] [9] [700]

= ‘:‘f ; & T] @,
- % £ -.

CSCI 2100 21 SAINT LOUIS UNIVERSITY.

* This 1s called a collision, because there
1s already another valid record at [2].

[The new record goes in the empty spot. J

[0] [1] [2] [3] [4] [3] [700]

- | iy)] |
Ly =P Sy g | U "B] @'
SN = \ 7
N
- = ' ¢ . AM /h

CSCI 2100 22 SAINT LOUIS UNIVERSITY.

Searching for a Key

* The data that's attached to a key can
be found fairly quickly.

701466868

[0] [1] [2] [3] [4] [3] [700]

- Iy I \] »\‘
=~ 2 g &\] ?
= Y & N

CSCI 2100 23 SAINT LOUIS UNIVERSITY.

Searchlng for a Key

e Calculate the hash value.
701466868

e Check that location of the
array for the key.

[0] [1] [2] [3] [4] [3]

= =k BV s N
rlong” =y A& 7
N/

2 A

CSCI 2100 SAINT LOUIS UNIVERSITY.

Searchlng for a Key

* Keep moving forward until you find

the key, or you reach an empty spot. 701466868

[0] [1] [2] [3] [4] [3]

<) =k BV ! A
rlong” =y A& 7
4 N/

3 A

CSCI 2100 SAINT LOUIS UNIVERSITY.

Searchlng for a Key

* Keep moving forward until you find

the key, or you reach an empty spot. 701466868

[0] [1] [2] [3] [4] [3]

<) =k BV ! A
rlong” =y A& 7
4 N/

3 A

CSCI 2100 SAINT LOUIS UNIVERSITY.

Searching for a Key

 When the item 1s found, the
information can be copied to the
necessary location.

701466868

* What 1f you reach an empty spot
or the end of array?

[0] [1] [2] [3] [4]1~_[3] [700]

‘j 0 j ’ = p’|‘-‘v @ l@;‘
- 2 : -.

CSCI 2100 27 SAINT LOUIS UNIVERSITY.

Deleting a Record

* Records may also be deleted from a hash table.

Please

delete me.

[0] [1] [2] [3] [4] [3]

CSCI 2100 28 SAINT LOUIS UNIVERSITY.

Deleting a Record

* Records may also be deleted from a hash table.

* But the location must not be left as an ordinary "empty
spot" since that could interfere with searches.

[0] [1] [2] [3] [4] [3]

CSCI 2100 29 SAINT LOUIS UNIVERSITY.

Deleting a Record

* Records may also be deleted from a hash table.

* But the location must not be left as an ordinary "empty
spot" since that could interfere with searches.

* The location must be marked 1n some special way so that a
search can tell that the spot used to have something 1n it.

[0] [1] [2] [3] [4]

[700]

CSCI 2100 30 SAINT LOUIS UNIVERSITY.

List based Hash Table

Can we do better?

h("Alan") = 4
h("Peter") =
h("Tom") = 1 collision
h("M&I‘y") =
h("Anna") = m-1
. 0 1 2 3 4 5 m-1
T |null null | null| ... |
1 v v
Tom ||Peter Alan Anna
v ¥ v ¥
null| Mary null null
v
null

CSCI 2100 31 SAINT LOUIS UNIVERSITY.

Hash Map

e |mplement Hash Map

= Hash function just returns the remainder when the key is divided by the
hash table size.

= Hash entry (node) has key and value structure.

= |n addition, the class contains search(key) function to access mapped
value by key, insert(key,value) function to put key-value pair in table and
remove(key) function to remove hash node by key.

= For collision resolution, separate chaining strategy could be used.

CSCI 2100 32 SAINT LOUIS UNIVER SITY.

Map Methods

Delegate operations to a list-based map at each cell:

Algorithm search(k):
Output: The value of the key k or null
bucket = h(k)
return A[bucket].search(k) {delegate the search to the list-based map at A[h(k)]}

Algorithm insert(k,v):
bucket = h(k)
t = A[bucket].insert(k,v)
n=n+1
return ¢ {delegate the put to the list-based map at A[h(k)]}

Algorithm remove(k):
bucket = h(k)
A[bucket].remove(k)
n=n-1 {delegate the remove to the list-based map at A[h(k)]}

CSCI 2100 33 SAINT LOUIS UNIVERSITY.

Implement Simple Hash Map: testHashMap.cpp

1 I1 nclude<iostream> 41 void Insert(int key, int value)

2 42 {

3 using namespace std; 43 int hash = HashFunc(key);

4 44 while (table[hash] != NULL &% table[hash]->key != key)
. 45

5 const int TABLE_SIZE = 128; 46 { hash = HashFunc(hash + 1);

6 47 }

7 // HashEntry Class Declaration
8 class HashEntry

48 if (table[hash] != NULL)
49 delete table[hash];

9 50 table[hash] = new HashEntry(key, value);
{ . 51 }
10 public: 52
11 int key; 53 // Search Element at a key
12 int value; 54 int Search(int key)
. . 55 {
13 HashEntry(int key, int value) o int hash = HashFuncCkey);
14 { . 57 while (table[hash] != NULL &% table[hash]->key != key)
15 this->key = key; 58 {
16 this->value = value; 59 hash = HashFuncChash + 1);
17 } 60 }
18 }; 61 if (table[hash] == NULL)
19 ? 62 return -1;

63 else
64 return table[hash]->value;
65 }

20 //MashMap Class Declaration
21 class HashMap

22 { gg // R Element at a k
23 private: femove Lleme a key
24 HashEntry **table; g ;md Remove(int key)
25 public: 70 int hash = HashFunc(key);
26 HashMap() 71 while (table[hash] != NULL)
27 7 {
28 table = new HashEntry * [TABLE_SIZE]; ;i if (E::ngh“hj"key = key)
29 for (in’t i= 0; i< TABLE_SIZE; iH) 75 hash = Ha;hFunc(hash + 1);
30 { 76 }
31 table[i] = NULL; 77 if (table[hash] == NULL)
32 } 78
33 } 7 cout<<"No Element found at key "<<key<<endl;
80 return;
34 81 }
35 // Hash Function 82 else
36 int HashFunc(int key) 83 {
37 { 84 delete table[hash];
. 85 }
gg } return key % TABLE SIZE; 86 cout<<"Element Deleted"<<endl;
87 }

89 ~HashMap()

90 {

91 for (int 1 = @; 1 < TABLE_SIZE; i++)
92 {

93 if (table[i] != NULL)

94 delete table[i];

95 delete[] table;

96 }

97 }

98 1;

29

100 int main()

101 {

102 HashMap hash;

103 int key, value;

104 int choice;

105 while (1)

106 {

107 cout<<"\N----—— e "<<endl;
108 cout<<"Operations on Hash Table"<<endl;
109 cout<<"\nN------—————emo - "<<endl;
110 cout<<"1l,Insert element into the table"<<endl;
111 cout<<"2.Search element from the key"<<endl;
112 cout<<"3.Delete element at a key"<<endl;
113 cout<<"4 Exit"<<endl;

114 cout<<"Enter your choice: ";

115 cim>>choice;

CSCI 2100

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

return 0;

switch(choice)
{
case 1:
cout<<"Enter element to be inserted: ";
cim>>value;
cout<<"Enter key at which element to be inserted: ";
cin>>key;
hash.Insert(key, value);
break;
case 2:
cout<<"Enter key of the element to be searched: ";
cin>>key;
if (hash.Search(key) = -1)
{
cout<<"No element found at key "<<key<<endl;
continue;

}

else
{
cout<<"Element at key "<<key<<" : ";
cout<<hash. Search(key)<<endl;
}
break;
case 3:
cout<<"Enter key of the element to be deleted: ";
cim>key;
hash.Remove(key);
break;
case 4:
exit(1);
default:
cout<<"\nEnter correct option\n";
}

SAINT LOUIS UNIVERSITY

Double Hashing

Double hashing is a collision resolving technique in open addressed hash
tables. Double hashing uses the idea of applying a second hash function to
key when a collision occurs.

Double hashing can be done using:

(hash1(key) + i * hash2(key)) % TABLE_SIZE

First hash function is typically: hash1(key) = key % TABLE_SIZE
Second hash function can be: hash2(key) = PRIME - (key %PRIME) where
PRIME is a prime smaller than the TABLE_SIZE.

CSCI 2100 36 SAINT LOUIS (13| UNIVER SITY.

Double Hashing

insert(76) 1nsert(93) insert(40) insert(47) insert(10) msert(55
T6%7=16 93%7=2 40%7=35 47%7 =135 10%7 =13 55%7 =6

5 - (47%5) =3 5 - (55%5) =5

0 0 0 0 0 0

1 ! 1 a7 H 47 Y47

: % 93 %193 %193 %1 93 *1 93

3 3 3 3 3 10 3 10

4 4 4 4 4 4 55

: . > 40 ?| 40 3 40 ?| 40

°176 °1 76 °176 °176 °1 76 °1 76
probes: 1] 1 1 2 1 2

CSCI 2100 37 SAINT LOUIS UNIVERSITY.

Good Hash Function

e Ahash function is perfect if it maps items to buckets with no collisions.

e The number of items and all keys should be known to design a perfect

hashing that results in constant complexity for insert, search, and remove
operations.

o 1 2 ses n—1
Key Set
Perfect hashing function (a) r‘% ?&M

Hash Table

0o 1 2 m—1

o 1 2 2o e n—1
L L I [1 [[[|KeySet

Minimal perfect hashing function (b M
Hash Table
o 1 2 vos n—1

https://emn178.qithub.io/online-tools/sha256.html

CSCI 2100 38 SAINT LOUIS UNIVERSITY.

https://emn178.github.io/online-tools/sha256.html

Bloom filter

A space-efficient data structure designed to tell you, rapidly and memory-
efficiently, whether an element is present in a set or not with high probability.

h1(“oracle”) =1 h1l(“database”) =2 h1(“filter”) =4
h2(“oracle”) =4 h2(“database”) =5 h2(“filter”) =7
h3(“oracle”) =5 h3(“database”) = 10 h3(“filter”) = 10
X | X XXIXX X XX
1 2 3 4 5 6 7 8 9 10 11 12

CSCI 2100 39 SAINT LOUIS UNIVERSITY.

Storing user passwords

Password Hash Salting

Hashing
User Password Salt Added Algorithm Hashed Password + Salt

Apple — AppleyrtZd — t‘. — 153107b3a79cc2{78b9526aabbd40c34
yrtZd

N /
\ Password Store

£53107b3a79cc2f78h9526aabbd40c34

yrtZd
Adobe password data Password hint

110edf2294fb8bf4 =» numbers 123456
110edf2294fb8bfa -» ==123456
110edf2294fb8bT4 ->» c'est "123456"

HaShlng IS used eXtenSIVely n CompUter 8fdaTelf@b56593f e2a311ba0®9ab4787 -> numbers
security: 8fdaTe1fob56593f e2a311ba09abd707 -> 1-8 © 12345678
. . 8fda7elf@b56593f e2a311baf9ab4767 -> 8&digit
Authentication .
. 2fca9b@03de39778 e2a311ba@9ab4767 -> the password is password
Slgnature 2fca9b003de39778 e2a3l1ba@9aba787 -> password © password
. 2fca9be03de39778 e2a311baf®9ab4707 =-> rhymes with asswdl
Storing password

) e5d8efedo088dbob -=> gwerty
Blockchain e5d8efedo0asdbab -> ytrewq tagurm‘di
e5d8efedo088dbob -> 6 long gqwert
ecba98cca55eabc2 =» sixxone
ecba98cca55eabc2 =» 1%6 m
ecba98cca55eabc2 =» siX0nes

Adobe's password database format made many users' passwords easy to recover

CSCI 2100 40 SAINT LOUIS UNIVERSITY.

