
More parsing

today
- HW due

- Next HW
,

cover flex
Con hopper)

- Git for next HW
(due Friday)

- I am gone Montes
(you have class)

Lasttime
- More parsing

:

•

removing ambiguity
•

eliminating left recursion

Bak#ractal .

'

Any CFG can be parsed
↳ Chomsky Normal Form

CYK algorithm
Run time : O(n3)

This is too slow !

Most modern parsers look
for certain restricted
families of CFGS

.

Result:@fnseatfobnt

a LR -

sbtuofnsseorwer"

Have Ocn) time
parsing

¥÷
left to right parsing

dleftmost derivation

Anything accepted by this typeof
parser is called

an LL grammar .

Picture : IIBC

A
→

×

⇒

4 BC

Topdownparsing (for Us)
Called predictive parsing .

Wortgnammwnek.

on

@cD
Table based in practice

SHE: S→aAd

A → abla

ParseEEI:

Rule : string 45 , S
apply rules until

onemxtmantphnefthchd

(backtrack If there
is a mistake) I

a

Note : Left pearson is

very
bad on these !

A → Ab

* b

IAy"X never maths an

input or hits a

conflict

So never forced to
backtrack

.

How predictive parsing works :

- the input string w is in an

input buffer

- Construct a predictive
parsing table for 6

.

- If
you canmatch a

terminal
,

do it

K move to next
character)

- otherwise
,

look in table for
rule to get transition
that will eventuallymatch

Hrdpart :

• build The table !

(need 6 decide a transition
if at a noncriminal
based on the next inputG)

terminal)
Lltk :

FIRST & Follow Sets

:(
for LLA)) :

-
First (a§ any string of non . terminals

ttominels

: = set of possible first
terminals in any

derivation
of a by the grammar

% if × is a terminal
,

ERSTCX)= ×

2) If X→c is a production ,
add E to FIRST (x)

3) If X is a non terminal :

If X→ YYZ ...
Yk is a production :

If a is in FIRST (Yi) andadd a

q is in FRSTCYI
,

...

,
FRSTCYED

add E if E Is in ERSTCY
,),

...

FRSTCYK)

Ef : E → TE
'

E ' → TTE ' / c

T → FT
'

T
'

→ * FT '
1 E

F → (E) / id

First (E) = { (
,

id }
FIRST (E) = { +

,
E 3

FIRST ft) = { (
,

id }
FIRST Ct

')€*,
a }

FIRST (F) = { C
,

id }

FOLLOW Sets
- -

:

(We 'll assume any input ends in

$, just to have an

end of Ale
'

character)
Rates :

D Put $ in Follow (s)
where S is start symbol .

2) Given a production :

A → 439

everything in FRSTAB) goes
in Follow (B)

(except E ,
if it is there) .

3) ' Given a production:
A → XB

or A → XBP with E £ FIRST@
then everything in Follow (A)

also goes In Follow (B)

Et : E → TE
'

E ' → TTE ' / c

T → FT
'

T
'

→ * FT '

I E

F → (E) / id

We fhards't (E) = first A) = FIRST (F)
= { (

,
id }

FIRST (E
') = Et

,
e3

FIRST (T
') = { *

,
E)

Ei .

Follow (E) = {)
,

$ }
Follow Ce D= {)

, $3
Follow G) = { +

, 3$ }
Follow CT ')={+ ,)

, $3
Follow (F) ' Et ,

*
,

)
,

$ }

Then
,

the Table : M :

For any production X→x
,

do

d) for each terminal a in

FIRST (a)
,

add

X→x to M[A ,a]
2) If E is in FRSTCD,add X → a to M[Ab]

for each terminal b in

Follow (A) .

If E is in FIRST @) and
$ is in FOLLOWCA) ,
add A- → a to M[A ,$] .

Any other entries are

errors .

(construct on board)

End result :

Inputs
Nonlermnal + * C) $

F-E E→TE ' E→TE '

¥.fm#fIItIf.*ft*ifIIfIII
F F→id F→€)

Then :pvsc=
Action Matched

s¥¥f¥÷¥iy|

