CS3200: Programming Languages Spring 2018

Homework 5

1. Consider the following pseudocode:

1. procedure main()

2. x : real := 5.0

3. y : real := 3.2

4. procedure middle()

5. y: real :=x

6. procedure inner ()
7. print x,y

8. x : real := 11.7
9. --- body of middle
10: inner()

11. print x,y

12. --- body of main

13. print x, y
14. middle()
15. print x,y

Suppose this was code for a language with the declaration order rules of C, but with
nested subroutines allowed: that is, names must be declared before use, and the scope of a
name extends from its declaration through the end of the block. At east print statement,
indicate which declarations of a and b are in the referencing environment. What does the
program print, or does the compiler identify static semantic errors? Repeat the exercise for
the declaration order rules of C#, where names must be declared before use but the scope of
a name is the entire block in which it is declared, and for Modula-3’s rules, where names can
be declared in any order, and their scope is the entire block in which they are declared.



CS3200: Programming Languages Spring 2018

2. Consider the following pseudocode, assuming nested subroutines and static scope:

procedure main()
g : integer

procedure B(a : integer)
X : integer

procedure A(n : integer)
g :=n

procedure R(m : integer)
print x
x =x/ 2
if x>1
R(m+1)
else
A(m)

-- body of B
X 1= a*xa
R(1)

--body of main
B(2)
print g

(a) What does the program print?

(b) Show the frames on the stack when A has just ben called. For each frame, show static
and dynamic links.

(¢) Explain how A will find g.



CS3200: Programming Languages Spring 2018

3. Consider the following pseudocode. Assume that print works like the python function, so
that print a, b will output the two integers separated by a space, with a newline at the end
(so that each print command will go on a different line.

a : integer
b : integer

procedure first(n : integer)
b : integer
a:=n
b :=n+ 2

procedure second(n : integer)
a : integer
a:=n
b:=n-2

procedure big_function
a : integer
a:=0
first (1)
print a, b
second (17)
print a,b

a:=0

b :=0
first(11)
print a,b
second (6)
print a,b
big_function()
print a,b

(a) What does this program print if the language uses static scoping?

(b) What about dynamic scoping?



CS3200: Programming Languages Spring 2018

4. Consider the following pseudocode:

I
[EY

X : integer :
y : integer :

]
N

procedure mult()
X =X %y

procedure second(P : procedure)
X : integer := 3

PO

procedure first()
y : integer := 4
second (mult)

first()
print x

(a) What does the program print if the language has static scoping?
(b) What does it print if the language uses dynamic scoping with deep binding?
(¢) What does it print if the language uses dynamic scope with shallow binding?

5. Consider the expression in C: (x/y > 0)&&(y/x > 0). What is the result when x is 07 What
about when y is 07 Would it make sense to design a language where this is guaranteed to be
false when either x or y was 0, or do you think this behavior in C is acceptable?

6. Consider the following snippet of code:

type X = array [1..10] of integer
Y =X

A X

B:Y

C : array [1..10] of integer

Which of the variables A, B, and C will the compiler consider to have compatible types
under structural equivalence, strict name equivalence, and loose name equivalence?

7. Consider the following C++ code fragment:



CS3200: Programming Languages Spring 2018

#include <list>
using std::list;

class fizz { //code here}
class buzz : public fizz { //code here }

static void print_all(list<fizz*> &L) { //code here}

int main() {
list<fizzx> fizzlist;
list<buzz*> buzzlist;
//code to add things to lists
print_all(fizzlist); //works find
print_all(buzzlist); //static semantic error

Why won’t the compiler allow the second call? Give an example where this could lead to
bad behavior, to explain why it is not allowed.



