Hash Tables and Maps

CSCI 2100 Data Structures
Spring 2018

Tae-Hyuk (Ted) Ahn

Department of Computer Science
Program of Bioinformatics and Computational Biology
Saint Louis University

SAINT LOUIS
UNIVERSITY.

m— EST. 1818 ==

STL Containers

e Sequence Containers — store sequences of values
= vector, deque, list

e Associative Containers — use “keys” to access data rather than
position (Account #, ID, SSN, ...)

= get

= multiset
" map

= multimap

e Container Adapters — specialized interfaces to general containers
= stack, queue, priority_queue

CSCI 2100 2 SAINT LOUIS UNIVERSITY.

Associative Containers

e Stores elements based on a key

e Key can consist of one or more attributes to uniquely identify
each element (we will assume only one attribute).

e Example: Department of Motor Vehicles (DMV) uses license-
plate # to identify a vehicle.

e Similar to vector & list — it is another storage structure with
operations to access & modify elements.

e Main difference is that associative-container uses the key rather
than an index (vector) or linear search (list) to retrieve an element.

CSCI 2100 3 SsAINTLOUIS (fglp) UNIVERSITY _

Associative-Container : set

e Stores a set of values (i.e., “keys”)
e Values are unique (stored only once)

e Implemented as a binary search tree
" #include <set>

" set<string> s;

e Fastinsert and delete

"= i1nsert, erase

e Fast search
= find

e Other operations

= size, empty, clear,

CSCI 2100 4

SAINT LOUIS UNIVERSITY.

Stdset.cpp 1 inc'l.ude <iostream>

2 #include <set>

3 #include <string>

4

5 using namespace std;

6
7 int main() {
8 set<string> setOfNumbers;
9
10 // Lets insert four elements
11 setOfNumbers.insert("first");
12 setOfNumbers.insert("second");
13 setOfNumbers.insert("third");
14 setOfNumbers.insert("first");
15
16 // Only 3 elements will be inserted
17 cout<<"Set Size = "<<setOfNumbers.size()<<endl;
18
19 // Iterate through all the elements in a set and display the value.
20 for (set<string>::iterator it=setOfNumbers.begin(); it!=setOfNumbers.end(); ++it) {
21 cout << ' ' << *it;
22 }
23 cout<<"\n";
24
25 // Search for element in set using find member function
26 set<string>::iterator it = setOfNumbers.find("second");
27 if (it != setOfNumbers.end()) {cout<<"'first' found"<<endl;}
28 else {cout<<"'first' not found"<<endl;}
29
30 // Search for element in set using find member function
31 it = setOfNumbers.find("fourth");
32 if(it != setOfNumbers.end()) {cout<<"'fourth' found"<<endl;}
33 else {cout<<"'fourth' not found"<<endl;}
34
CSCI 2100 35 return 0;

Associative Containers: multiset

e Stores a set of values (i.e., “keys”)
e Like set, but values need not be unique

e Implemented as a balanced binary search tree (red-black tree)
" #include <set>

" multiset<string> ms;

e Fastinsert and delete

"= i1nsert, erase

e Fast search
= find

e Other operations

= size, empty, clear,

CSCI 2100 6 SAINT LOUIS UNIVERSITY.

Associative Containers: map

e Stores a set of (key, value) pairs
e Each key has one value

e Implemented as a binary search treg
#include <map>
//define a map with
//keys of type string
//and values of int

map<string, 1int> m;

e Fastinsert and delete
m[“Ted”] = 99;

insert, erase

CSCI 2100 7

“Ted” | 99

“Michael” | 105

“lames” | 23

SAINT LOUIS UNIVERSITY.

Associative Containers: map

e Fast search
* int x = m[“Ted”];
= find

e Other operations

= size, empty, clear,

CSCIl 2100 8 SAINT LOUIS UNIVERSITY.

STL Maps: Constructors

e Copy constructor:
map<char, int> m;

map<char, int> m2 (m) ;

CSCIl 2100 9 SAINT LOUIS UNIVERSITY.

STL Maps: Data Storage

e An STL map is implemented as a tree-structure, where each
node holds a “pair”

e Most important to know when retrieving data from the table
= Some functions return the pair, not just the value

e A pair has two fields, first (holding the key) and second (holding
the value)

CSCI 2100 10 saINTLOUIS ([Q]p)| UNIVERSITY _

STL Map: Data Storage

e If you have a pair object, you can use the following code to print
the key and value:

cout << myPairObject.first << <<
myPalrObject.second;

e If you have a pointer to the pair object, use the arrow operator
Instead

cout << myPairObject->first << <<
myPairObject->second;

CSCI 2100 1 SAINT LOUIS UNIVERSITY.

STL Map: Data Storage

e Access element at

= Returns a reference to the mapped value of the element identified with
key k.

= |fk does not match the key of any element in the container, the function
throws an out_of_range exception.

e Access element []

= |f k matches the key of an element in the container, the function returns a
reference to its mapped value.

= |fk does not match the key of any element in the container, the function
inserts a new element with that key and returns a reference to its mapped

value.

CSCI 2100 12 SAINT LOUIS UNIVERSITY.

1 #include <iostream>

Sthap.cpp 2 #include <string>

3 #include <map>

using namespace std;

4

)

6

7 int main O {
8 map<int,string> mymap;
9

10 mymap[1]="Banana";

11 mymap[2]="Peach";

12 mymap[3]=mymap[2];

" << mymap[1] << "\n';
<< mymap[2] << '\n';
<< mymap[3] << "\n';

14 cout << "mymap[1] is
15 cout << "mymap[2] is
16 cout << "mymap[3] is

18 mymap.at(l) = "Melon";
19 mymap.at(2) = "Strawberry";
20 mymap.at(3) = "Kiwi";

22 map<int,string>::iterator it;
23 for (it=mymap.begin(); it!=mymap.end(); ++it)

24 cout << it->first << " == " << it->second << endl;

25

26 it = mymap.find(2);

27 1if (it != mymap.end())

28 cout << "The value of the key [2] is " << it->second << endl;
29

30 return 0;

CSCI 2100 31}

What is a Hash Table?

e The simplest kind of hash table is an array of records.
e This example has 501 records.

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 14 saINTLOUIS [fqlp) UNIVERSITY _

What is a Hash Table?

e Each record has a special field, called its key.

e |n this example, the key is a long integer field called Number.

[0] [1]

[2]

[3]

[4]

[9]

[500]

An array of records

CSCI 2100

15

SSSSSSSSSS

IIIIIIIIIII

What is a Hash Table?

e The Number might be a person's identification number (e.g.,
student ID, SSN), and the rest of the record has information about
the person.

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 % saINTLOUIS ([Qp)| UNIVERSITY _

What is a Hash Table?

e \When a hash table is in use, some spots contain valid records,

and other spots are "empty".

[4]

[9]

An array of records

CSCI 2100 17

[500]

SAINT LOUIS UNIVERSITY.

Inserting a New Record

: Number
e |norder to insert a new record, the key must 203802035

somehow be converted to an array index. o
e The index is called the hash value of the key.

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 18 SAINT LOUIS UNIVERSITY.

Inserting a New Record

e Typical way create a hash value: ';lgt;;gzlggsr
= Number mod ArraySize o
= 393802035 mod 501 =3 -

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 19 SAINT LOUIS UNIVERSITY.

Inserting a New

. : Number
e The hash value is used for the location of the new 303802035

record. e

An array of records

CSCI 2100 20 SAINT LOUIS UNIVERSITY.

Hash Collisions

. : Number
e Here is another new record to insert. 493375785

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 21 SAINT LOUIS UNIVERSITY.

Hash Collisions

: : Number
e Here is another new record to insert. 193375785
= 493375785 mod 501 =3 A=

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 29 SAINT LOUIS UNIVERSITY.

Hash Collisions

. : Number
e Here is another new record to insert. 493375785

= 493375785 mod 501 =3 e

= Index 3 has already key and value. / \:

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 23 SAINT LOUIS UNIVERSITY.

Hash Collisions

e This is called a collision, because there is already ';'9‘;5,'7‘5"7’?5’

another valid record at [3]. -

An array of records

CSCI 2100 24 SAINT LOUIS UNIVERSITY.

Hash Collisions

L . Number
e Let us make a collision rule: 493375785
= When a collision occurs, move forward until you find an =

empty spot. / 2

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 25 SAINT LOUIS UNIVERSITY.

Hash Collisions

L . Number
e Let us make a collision rule: 493375785
= When a collision occurs, move forward until you find an =

empty spot. / v

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 2% SAINT LOUIS UNIVERSITY.

Hash Collisions

" . Number

e Let us make a collision rule: 493375785
= When a collision occurs, move forward until you find an =
empty spot. :
\[

[0] [1] [2] [3] [4] [9]

An array of records

CSCI 2100 27 SAINT LOUIS UNIVERSITY.

Searching for a Key

e The data (or value) that is attached to akey can ~ humber
be found fairly quickly.

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 28 SAINT LOUIS UNIVERSITY.

Searching for a Key

e The data (or value) that is attached to akey can ~ humber
be found fairly quickly.

= 493375785 mod 501 =3

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 29 SAINT LOUIS UNIVERSITY.

Searching for a Key

e The data (or value) that is attached to a key can be found ';lg‘;g?segsr
fairly quickly.

= 493375785 mod 501 =3

= Follow the collision rule (keep moving forward) until you find the
key, or you reach an empty spot. No!

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 30 SAINT LOUIS UNIVERSITY.

Searching for a Key

e The data (or value) that is attached to a key can be found ~ Number

fairly quickly. 453TTES
= 493375785 mod 501 =3
= Follow the collision rule (keep moving forward) until you find the
key, or you reach an empty spot.
Yes
[0] [1] [2] [3] [4] [5] [500]

Number E
493375785

An array of records

CSCI 2100 31 SAINT LOUIS UNIVERSITY.

Searching for a Key

e The data (or value) that is attached to a key can be found ~ Number

fairly quickly. 493375783
= When the item is found, the information can be copied to the f
necessary location. iE
Yes
[0] [1] [2] [3] [4] [5]

Number B
493375785

An array of records

CSCI 2100 32 SAINT LOUIS UNIVERSITY.

Deleting a Record

e Records may also be deleted from a hash table. Delete
699072358

e

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 33 SAINT LOUIS UNIVERSITY.

Deleting a Record

e Records may also be deleted from a hash table. Delete

e But the location must not be left as an ordinary "empty 699072358
spot" since that could interfere with searches.

e The location must be marked in some special way so that
a search can tell that the spot used to have something in it.

[0] [1] [2] [3] [4] [9] [500]

An array of records

CSCI 2100 34 SAINT LOUIS UNIVERSITY.

Map Methods

e Delegate operations to a list-based map at each cell:

Algorithm search(k):

Output: The value associated with the key k in the map, or null if there is no
entry with key equal to k in the map

return Alh(k)].search(k) {delegate the search to the list-based map at A[h(k)]}

Algorithm insert(k,v):
Output: If there is an existing entry in our map with key equal to k, then we
return its value (replacing it with v); otherwise, we return null
t = Alh(k)].insert(k,v) {delegate the put to the list-based map at A[h(k)]}
if t = null then {kis a new key}
n=n+1
return ¢

Algorithm remove(k):

Output: The (removed) value associated with key k in the map, or null if there
is no entry with key equal to k in the map

t=A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}

if { # null then {k was found}
n=n-1
return ¢
Hash Tables
CSCI 2100 35

SAINT LOUIS UNIVERSITY.

Interview Question

e |mplement Hash Map

= Hash function just returns the remainder when the key is divided by the
hash table size.

= Hash entry (node) has key and value structure.

= |n addition, the class contains search(key) function to access mapped
value by key, insert(key,value) function to put key-value pair in table and
remove(key) function to remove hash node by key.

= For collision resolution, separate chaining strategy could be used.

CSCI 2100 36 SAINT LOUIS UNIVERSITY.

Implement Simple Hash Map: testHashMap.cpp

1 l1 nclude<iostream> 4 void Insert(int key, int value)
2 42 {
3 using namespace std; 43 int hash = HashFunc(key);
4 44 while (table[hash] != NULL & table[hash]->key != key)
. 45 {
5 const int TABLE_SIZE = 128; 46 hash = HashFunc(hash + 1);
6 47 }

48 if (table[hash] != NULL)
49 delete table[hash];

7 // HashEntry Class Declaration
8 class HashEntry

9 { 50 table[hash] = new HashEntry(key, value);
. 51 }
10 public: 52
11 int key; 53 // Search Element at a key
12 int value; 54 int Search(int key)
1 H : : 55 {
12 {ashEntr'y(mt key, int value) se int hash = HashFuncCkey);
. 57 while (table[hash] != NULL &% table[hash]->key != key)
15 this->key = key; 58 {
16 this->value = value; 59 hash = HashFunc(hash + 1);
17 } 60 }
18 }; 61 if (table[hash] == NULL)
19 ’ 62 return -1;

63 else
64 return table[hash]->value;
65 }

20 //HashMap Class Declaration
21 class HashMap

24 gg // R El k
23 private: _Remove Element at a key
24 HashEntry **table; g t{md Remove(int key)
25 public: 70 int hash = HashFunc(key);
26 HashMap() 71 while (table[hash] != NULL)
27 { 72 {
28 table = new HashEntry * [TABLE_SIZE]; ;i if cﬁ:ii_[has‘h]"key = key)
232 f[:or‘ (in’t i= 0; i< TABLE_SIZE; 'i.++) 75 hash = Ha;hFunc(hash + 1);
76 }
31 table[i] = NULL; 77 if (table[hash] == NULL)
2 78
33 } } 7 cout<<"No Element found at key "<<key<<endl;
34 80 return;
81 }
35 // Hash Function 82 else
36 int HashFunc(int key) 83 {
37 { 84 delete table[hash];
. 85 }
gg } return key % TABLE_SIZE; 86 cout<<"Element Deleted"<<endl;
87 }

Implement Simple Hash Map: testHashMap.cpp

89 ~HashMap()

90 {

91 for (int 1 = @; i < TABLE_SIZE; i++)
92 {

93 if (table[i] != NULL)

94 delete table[i];

95 delete[] table;

96 }

97 }

98 };

29

100 int main()

101 {

102 HashMap hash;

103 int key, value;

104 int choice;

105 while (1)

106 {

107 cout<<"\N---————m e "<<endl;
108 cout<<"Operations on Hash Table"<<endl;
109 cout<<"\N--=———m e "<<endl;
110 cout<<"1.Insert element into the table"<<endl;
111 cout<<"2.Search element from the key"<<endl;
o cout<<"3.Delete element at a key"<<endl;
113 cout<<"4 Exit"<<endl;

114 cout<<"Enter your choice: ";

115 cim>>choice;

CSCI 2100

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

switch(choice)
{
case 1:
cout<<"Enter element to be inserted: ";
cin>>value;
cout<<"Enter key at which element to be inserted: “;
cin>>key;
hash.Insert(key, value);
break;
case 2:
cout<<"Enter key of the element to be searched: ";
cin>>key;
if (hash.Search(key) == -1)
{
cout<<"No element found at key "<<key<<endl;
continue;
}
else
{
cout<<"Element at key "<<key<<" : ";
cout<<hash. Search(key)<<endl;
}
break;
case 3:
cout<<"Enter key of the element to be deleted: ";
cim>key;
hash.Remove(key);
break;
case 4:
exit(1);
default:
cout<<"\nEnter correct option\n";
}
return 0;

SAINT LOUIS UNIVERSITY

Reading C type declarations

e hitp://unixwiz.net/techtips/reading-cdecl.htmi

CSClI 2100 39 saINTLOUIS [l UNIVERSITY _

Pointer to the pointer

Pointer Pointer Variable

Finclude <i1ostream>

using namespace std;

int main) {
int var;
int *ptr;
int **pptr;

var = 3000;

// take the address of var
ptr = &var;

// take the address of ptr using address of operator &
pptr = &ptr;

// take the value using pptr

cout << "Value of var :" << var << endl;

cout << "Value available at *ptr :" << *ptr << endl;
cout << "Value available at **pptr :" << **pptr << endl;

return 0;

CSCI 2100

Why do we use double pointers?

4. fyouwantto have a list of characters (a word), you can use char *word
277 |Ifyouwant a list of words (a sentence), you can use char **sentence
If you want a list of sentences (a monologue), you can use char ***monologue

If you want a list of monologues (a biography), you can use char ****biography

Q<

If you want a list of biographies (a bio-library), you can use char *****biolibrary

If you want a list of bio-libraries (a ??lol), you can use char ******]ol

yes, | know these might not be the best data structures

https://stackoverflow.com/questions/5580761/why-
use-double-pointer-or-why-use-pointers-to-pointers

CSCI 2100 41 SAINT LOUIS UNIVERSITY.

