
Hash Tables and Maps

Tae-Hyuk (Ted) Ahn

Department of Computer Science
Program of Bioinformatics and Computational Biology

Saint Louis University

CSCI 2100 Data Structures
Spring 2018

2 CSCI 2100

STL Containers
●  Sequence Containers – store sequences of values
§  vector, deque, list

●  Associative Containers – use “keys” to access data rather than
position (Account #, ID, SSN, …)
§  set
§  multiset
§  map
§  multimap

●  Container Adapters – specialized interfaces to general containers
§  stack, queue, priority_queue

3 CSCI 2100

Associative Containers
●  Stores elements based on a key
●  Key can consist of one or more attributes to uniquely identify

each element (we will assume only one attribute).
●  Example: Department of Motor Vehicles (DMV) uses license-

plate # to identify a vehicle.
●  Similar to vector & list – it is another storage structure with

operations to access & modify elements.
●  Main difference is that associative-container uses the key rather

than an index (vector) or linear search (list) to retrieve an element.

4 CSCI 2100

Associative-Container : set
●  Stores a set of values (i.e., “keys”)
●  Values are unique (stored only once)
●  Implemented as a binary search tree
§  #include <set>

§  set<string> s;

●  Fast insert and delete
§  insert, erase

●  Fast search
§  find

●  Other operations
§  size, empty, clear, . .

5 CSCI 2100

StdSet.cpp

6 CSCI 2100

Associative Containers: multiset
●  Stores a set of values (i.e., “keys”)
●  Like set, but values need not be unique
●  Implemented as a balanced binary search tree (red-black tree)
§  #include <set>

§  multiset<string> ms;

●  Fast insert and delete
§  insert, erase

●  Fast search
§  find

●  Other operations
§  size, empty, clear, . . .

7 CSCI 2100

Associative Containers: map
●  Stores a set of (key, value) pairs
●  Each key has one value
●  Implemented as a binary search tree

#include <map>

//define a map with

//keys of type string

//and values of int

map<string, int> m;

●  Fast insert and delete
m[“Ted”] = 99;

insert, erase

“Ted” | 99

“Michael” | 105

“James” | 23

8 CSCI 2100

Associative Containers: map
●  Fast search
§  int x = m[“Ted”];
§  find

●  Other operations
§  size, empty, clear, . . .

9 CSCI 2100

STL Maps: Constructors
●  Copy constructor:
 map<char,int> m;
 map<char,int> m2(m);

10 CSCI 2100

STL Maps: Data Storage
●  An STL map is implemented as a tree-structure, where each

node holds a “pair”

●  Most important to know when retrieving data from the table
§  Some functions return the pair, not just the value

●  A pair has two fields, first (holding the key) and second (holding
the value)

11 CSCI 2100

STL Map: Data Storage
●  If you have a pair object, you can use the following code to print

the key and value:
cout << myPairObject.first << “ “ <<

myPairObject.second;

●  If you have a pointer to the pair object, use the arrow operator
instead
cout << myPairObject->first << “ “ <<

myPairObject->second;

12 CSCI 2100

STL Map: Data Storage
●  Access element at
§  Returns a reference to the mapped value of the element identified with

key k.
§  If k does not match the key of any element in the container, the function

throws an out_of_range exception.

●  Access element []
§  If k matches the key of an element in the container, the function returns a

reference to its mapped value.
§  If k does not match the key of any element in the container, the function

inserts a new element with that key and returns a reference to its mapped
value.

13 CSCI 2100

StdMap.cpp

14 CSCI 2100

What is a Hash Table?
●  The simplest kind of hash table is an array of records.
●  This example has 501 records.

[0] [1] [2] [3] [4] [5]
.
.
.

[500]

An array of records

15 CSCI 2100

What is a Hash Table?
●  Each record has a special field, called its key.
●  In this example, the key is a long integer field called Number.

[0] [1] [2] [3] [4] [5]
.
.
.

[500]
Number
699072358

An array of records

16 CSCI 2100

What is a Hash Table?
●  The Number might be a person's identification number (e.g.,

student ID, SSN), and the rest of the record has information about
the person.

[0] [1] [2] [3] [4] [5]
.
.
.

[500]
Number
699072358

An array of records

17 CSCI 2100

What is a Hash Table?
●  When a hash table is in use, some spots contain valid records,

and other spots are "empty".

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

18 CSCI 2100

Inserting a New Record
●  In order to insert a new record, the key must

somehow be converted to an array index.
●  The index is called the hash value of the key.

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
393802035

19 CSCI 2100

Inserting a New Record
●  Typical way create a hash value:
§  Number mod ArraySize
§  393802035 mod 501 = 3

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
393802035

20 CSCI 2100

Inserting a New
●  The hash value is used for the location of the new

record.

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
393802035

Number
393802035

21 CSCI 2100

Hash Collisions
●  Here is another new record to insert.

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

Number
393802035

22 CSCI 2100

Hash Collisions
●  Here is another new record to insert.
§  493375785 mod 501 = 3

[0] [1] [2] [3] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

Number
393802035

23 CSCI 2100

Hash Collisions
●  Here is another new record to insert.
§  493375785 mod 501 = 3
§  Index 3 has already key and value.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

[3]

Number
393802035

24 CSCI 2100

Hash Collisions
●  This is called a collision, because there is already

another valid record at [3].

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

X

[3]

Number
393802035

25 CSCI 2100

Hash Collisions
●  Let us make a collision rule:
§  When a collision occurs, move forward until you find an

empty spot.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

X

[3]

Number
393802035

26 CSCI 2100

Hash Collisions
●  Let us make a collision rule:
§  When a collision occurs, move forward until you find an

empty spot.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

X

[3]

Number
393802035

27 CSCI 2100

Hash Collisions
●  Let us make a collision rule:
§  When a collision occurs, move forward until you find an

empty spot.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

[3]

Number
393802035

Number
493375785

28 CSCI 2100

Searching for a Key
●  The data (or value) that is attached to a key can

be found fairly quickly.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

[3]

Number
393802035

Number
493375785

29 CSCI 2100

Searching for a Key
●  The data (or value) that is attached to a key can

be found fairly quickly.
§  493375785 mod 501 = 3

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

[3]

Number
393802035

Number
493375785

No!

30 CSCI 2100

Searching for a Key
●  The data (or value) that is attached to a key can be found

fairly quickly.
§  493375785 mod 501 = 3
§  Follow the collision rule (keep moving forward) until you find the

key, or you reach an empty spot.

[0] [1] [2] [4] [5]

An array of records

.

.

.

[500]
Number
699072358

Number
775672751

Number
344991607

Number
582739652

Number
493375785

Number
493375785

No!

Number
393802035

[3]

31 CSCI 2100

Searching for a Key
●  The data (or value) that is attached to a key can be found

fairly quickly.
§  493375785 mod 501 = 3
§  Follow the collision rule (keep moving forward) until you find the

key, or you reach an empty spot.

[0] [1] [2] [5]

An array of records

.

.

.

[500]
Number
775672751

Number
344991607

Number
582739652

Number
493375785

Number
493375785

Yes

Number
393802035

[3] [4]

Number
699072358

32 CSCI 2100

Searching for a Key
●  The data (or value) that is attached to a key can be found

fairly quickly.
§  When the item is found, the information can be copied to the

necessary location.

[0] [1] [2] [5]

An array of records

.

.

.

[500]
Number
775672751

Number
344991607

Number
582739652

Number
493375785

Number
493375785

Yes

Number
393802035

[3] [4]

Number
699072358

33 CSCI 2100

Deleting a Record
●  Records may also be deleted from a hash table.

[0] [1] [2]

An array of records

.

.

.

[500]
Number
775672751

Number
344991607

Number
582739652

Number
393802035

[3] [4]

Number
699072358

[5]

Number
493375785

Delete
699072358

34 CSCI 2100

Deleting a Record
●  Records may also be deleted from a hash table.
●  But the location must not be left as an ordinary "empty

spot" since that could interfere with searches.
●  The location must be marked in some special way so that

a search can tell that the spot used to have something in it.
[0] [1] [2]

An array of records

.

.

.

[500]
Number
775672751

Number
344991607

Number
582739652

Number
393802035

[3] [4] [5]

Number
493375785

Delete
699072358

35 CSCI 2100
Hash Tables

Map Methods
●  Delegate operations to a list-based map at each cell:

Algorithm search(k):
Output: The value associated with the key k in the map, or null if there is no

 entry with key equal to k in the map
return A[h(k)].search(k) {delegate the search to the list-based map at A[h(k)]}

Algorithm insert(k,v):
Output: If there is an existing entry in our map with key equal to k, then we

 return its value (replacing it with v); otherwise, we return null
t = A[h(k)].insert(k,v) {delegate the put to the list-based map at A[h(k)]}
if t = null then {k is a new key}

 n = n + 1
return t

Algorithm remove(k):
Output: The (removed) value associated with key k in the map, or null if there

 is no entry with key equal to k in the map
t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}
if t ≠ null then {k was found}

 n = n - 1
return t

36 CSCI 2100

Interview Question
●  Implement Hash Map
§  Hash function just returns the remainder when the key is divided by the

hash table size.
§  Hash entry (node) has key and value structure.
§  In addition, the class contains search(key) function to access mapped

value by key, insert(key,value) function to put key-value pair in table and
remove(key) function to remove hash node by key.

§  For collision resolution, separate chaining strategy could be used.

37 CSCI 2100

Implement Simple Hash Map: testHashMap.cpp

38 CSCI 2100

Implement Simple Hash Map: testHashMap.cpp

39 CSCI 2100

Reading C type declarations
●  http://unixwiz.net/techtips/reading-cdecl.html

40 CSCI 2100

Pointer to the pointer

41 CSCI 2100

Why do we use double pointers?

https://stackoverflow.com/questions/5580761/why-
use-double-pointer-or-why-use-pointers-to-pointers

