
CS3200: Programming Languages Homework 3 Spring 2016

Homework 3

1. Write regular expressions to capture the following regular languages:

(a) The set of 0-1 strings which have a 1 in every odd position. (Note: even positions may
be either 0 or 1.)

(b) Strings in C. These are delimited at the front and back by double quotes (”) and may
not contain newline characters. They may contain double quotes or backslash characters
if and only if those characters are “escaped” by a preceding backslash. (You may find it
helpful to introduce shorthand notation to represent any character that is not a member
of a small specified set, just to make the picture more readable. For example, if wanting
any character that is not a digit between 0 and 9, you could use the shorthand ¬[0−9].)

2. Write a DFA or NFA to recognize the languages described in each part of problem 1.

3. Show the NFA that results from applying the standard construction we saw in class (or you
can find in the book in Figure 2.7) to the regular expression letter(letter|digit)∗. Convert
this NFA to a DFA (see Example 2.14 in the book).

4. Give context-free grammars generating the following languages:

(a) L1 = {anbp | 0 ≤ p < n}.
(b) L2 = { anbncmdm | n,m ∈ IN }

5. Convert your two grammars from the previous problem to Chomsky Normal Form using the
conversion algorithm given in class.

6. Give a (relatively simple) LL(1) grammar for the language which consists of all strings of
properly balanced parenthesis and brackets. Use your grammar to construct a parse tree for
the string ([] ([])) [] (()).

1

CS3200: Programming Languages Homework 3 Spring 2016

7. Consider the following grammar (where non-terminals are in italics):

stmt → assignment

→ subroutine call

assignment → id := expr

subroutine call → id (arg list)

expr → primary expr tail

expr tail → op expr

→ ε

primary → id

→ subroutine call

→ (expr)

op → +| − | ∗ |/
arg list → expr arg tail

arg tail → , arg list

→ ε

(a) Construct a parse tree for the input foo(a,b).

(b) Give a canonical (rightmost) derivation of this same string.

(c) Prove the grammar is not LL(1).

(d) Describe what you need to do to make the grammar LL(1). (Note: you don’t necessarily
have to give me the final grammar that results, but describe clearly what you’d have to
fix and how you would go about doing that.)

2

