
CS344: Programming Languages Homework 9 Spring 2014

CS344: Programming Languages
Homework 9: Modules in Haskell

Required Problems

1. Recall the binary search tree data type from lecture (see the end of the lecture notes on April
3). We coded the functions singleton, find, and insert, as well as exploring functors and fmap
on this structure.

For this problem, finish the binary search tree implementation and code the function
removeFromTree. Recall that you delete in a binary search tree as follows

• if the node to be deleted is a leaf, simply replace it with an EmptyTree (which is basically
a null).

• if the node to be deleted has only one child, you can delete this value and promote the
child to its place.

• if the node to be deleted has two children, you need to find the next node in an in order
traversal of the tree, remove it, and move its value up to take the place of the deleted
node.

Hint: The easiest way to find the next node in an in order traversal of the tree is to realize
that it is the smallest element in the subtree rooted at the node’s right child. So code a helper
function findMin which finds the minimum element in a binary search tree, and use it on the
right child to find which node to use when replacing yourself. (And don’t forget to delete
that minimum node, also.)

2. For this problem, you will write a module that holds sets over a type a. Our goal is to
represent the set as a sorted list with NO repeated elements. Therefore, the type a will
always be of the classes:

• Eq: so that == and /= are defined for elements of type a

• Ord: so that we can compare using <, etc.

• Enum: So that we can make lists of the form [x..y] where x and y are elements of type
a.

• Bounded: so that minBound::a and maxBound::a are the smallest and largest elements
of a.

(Note that this means we can form [minBound..maxBound]::[a], a list of all the elements of
a.)

So our declaration of the Set type is:

data Set a = Set [a]

deriving (Show, Eq, Ord)

1



CS344: Programming Languages Homework 9 Spring 2014

I also have 2 functions that let you go back and forth between sets and lists, primarily for
testing purposes. You need to import Data.List for these to work, so I’m giving the syntax
for that below:

import qualified Data.List as L

list2set :: Ord a => [a] -> Set a

list2set = Set . L.nub . L.sort

set2list :: Set a -> [a]

set2list (Set xs) = xs

The temptation in implementing the set operations below is the overrely on list2set which
results in code that is simple, clear, and slow!! For example, for the union operation we could
define:

unionS_slow :: (Ord a) => Set a -> Set a -> Set a

unionS_slow (Set xs) (Set ys) = list2set (xs ++ ys)

The problem is that this will result in worst case O(n2) running time (where n is the max
of the length of the 2 sets) and this is much too slow. To speed things up, we need to take
advantage of the fact that the lists are sorted and have no repeat elements. So a much better
implementation of union is the following, which has a O(n) running time:

unionS :: (Ord a) => Set a -> Set a -> Set a

unionS (Set xs) (Set ys) = Set $ merge xs ys

where

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x<y = x:merge xs (y:ys)

| x>y = y:merge (x:xs) ys

| otherwise = x:merge xs ys

Note that on any of these problems, I will be looking for (at worst) an O(n) running time,
so be careful about using list2set! In particular, you don’t want to use those for intersectS or
diffS.

(a) Write two functions:

singS :: a -> Set a

emptyS :: Set a

which (respectively) create a single element set of the input and an empty set.

(b) Write the function:

2



CS344: Programming Languages Homework 9 Spring 2014

addToS :: (Ord a) => a -> Set a -> Set a

so that the first input will be added to the set in the appropriate location.

(c) Write the function:

intersectS :: (Ord a) => Set a -> Set a -> Set a

so that intersectS s1 s2 returns a set representing the intersection of s1 and s2.

(d) Write the function:

diffS :: (Ord a) => Set a -> Set a -> Set a

So that diffS s1 s2 returns a set representing the set-difference of s1 and s2, which is
precisely the elements contained in s1 that are not in s2.

(e) Write the function:

subseteq :: (Ord a) => Set a -> Set a -> Bool

So that subseteq s1 s2 returns true whenever s1 is a subset of s2.

(f) Now, put all these in a module named sets, and test your functions. I would like you to
submit either a haskell script or a set of instructions you run at the command prompt
after loading your module that indicate success of each of your functions.

3. Extra credit: Define a function subsequence that takes two lists and returns the ascending
list of indices at which the first list occurs as a subsequence of the second list. If there are
multiple solutions, return the one with smallest sum of all indices. (Note there will always be
one such solution and you will find it easily using the greedy approach.)

subsequence :: Eq a => [a] -> [a] -> [Int]

subsequence "abcde" "abcbcdef" =⇒ [0, 1, 2, 5, 6]

subsequence [9, 9, 7] [9, 7, 7, 9, 9, 7] =⇒ [0, 3, 5]

subsequence "abc" "caccdcbdca" =⇒ [1, 6, 8]

subsequence "312" "1212313" =⇒ error "subsequence does not exist"

3


