
CS344: Programming Languages Homework 8 Spring 2014

CS344: Programming Languages
Homework 8: more on Haskell

Required Problems

1. Data compression is very useful because it helps reduce resources usage, such as data storage
space or transmission capacity. For this task, you can assume that the input strings consist
only of letters of the English alphabet.

(a) Run-length encoding (RLE) is a very simple form of data compression in which runs
of data are stored as a single data value and a count, rather than as the original run.
Define a function rle that applied RLE to a the given string.

rle :: String -> String

rle "aaabbbbbc" =⇒ "3a 5b 1c"

rle "banana" =⇒ "1b 1a 1n 1a 1n 1a"

(b) Define rleInverse that applies the inverse RLE operation (RLE decoding) on a given
string.

2. Define a Point as a type alias for a two-dimensional point with double precision (so type

Point = (Double, Double)). Using Point, define Polygon as an alias for a list of points:
each two adjacent points form a line segment on the boundary of the polygon. (Note that the
first and last points will be considered adjacent, so we avoid repeated elements.) A polygon
will only be valid if it has 3 or more points.

(a) Define a function dist that calculates distance between two points:

dist :: Point -> Point -> Double

dist (0.5,3) (3.5,0) ) =⇒ 3

dist (1.2,-1.8) (1.2,-1.8) =⇒ 0

(b) Define onLineSegment that checks if point (the first argument) lies on the line segment
(where the starting point is the second argument and the ending point is the third
argument). Use 0.00001 precision. (Hint: use dist.)

onLineSegment :: Point -> Point -> Point -> Bool

onLineSegment (1,2) (0,0) (2,4) ) True

onLineSegment (-2,-4) (0,0) (2,4) ) False

(c) Define isValid that tests if the polygon is valid.

isValid :: Polygon -> Bool

isValid [] =⇒ False

isValid [(0,0), (1.5,2)] =⇒ False

isValid [(3.1,3), (3,3), (3,3)] =⇒ True

(d) Define perimeter that returns the perimeter of a polygon. If the polygon is not valid,
return an error message “Not a valid polygon”.

perimeter :: Polygon -> Double

perimeter [(0,0), (0,1), (1,1), (1,0)] =⇒ 4

perimeter [(0,0), (0,1)] ) =⇒ error "Not a valid polygon"

1



CS344: Programming Languages Homework 8 Spring 2014

(e) Define onPolygonBorder that checks if the point is on a polygon border. If the polygon
is not valid, return an error message “Not a valid polygon”. (Hint: use any or or, use
onLineSegment.)

onPolygonBorder :: Point -> Polygon -> Bool

onPolygonBorder (1,2) [(0,0), (2,4), (0,6), (-5,0)] ) =⇒ True

onPolygonBorder (3,3) [(0,0), (2,4), (0,6), (-5,0)] ) =⇒ False

onPolygonBorder (3,3) [(3,3), (3,3), (3,3)] ) =⇒ True

onPolygonBorder (1,5) [(1,1)] =⇒ error "Not a valid polygon"

3. Extra credit: Write a function:

squash :: (a -> a -> a) -> [a] -> [b]

which applies a given function to adjacent elements in a list. For example, squash f [x1, x2, x3, x4]
should equal [fx1x2, fx2x3, fx3x4].

You can implement this either using explicit recursion and pattern matching, or using the
function zipWith. Or for a bit more extra credit, write two versions and solve it both ways.

2


