
CS344: Programming Languages Homework 7 Spring 2014

CS344: Programming Languages
Homework 7

Required Problems

1. (a) Define a function addFirstA which takes a list of integers and returns a list in which
each element is the sum of the first and corresponding elements of list, without using
higher-order functions. For example:

addFirst [4,3,2,1] = [8,7,6,5]

(b) Repeat the problem in part a and write addFirstB, but you should use a higher-order
function.

2. Dene a function commaSeparate :: [String] -> String that takes a list of strings and
returns a single string that contains the given strings in the order given, separated by “, ”.
For example,

commaSeparate [] = ""

commaSeparate ["a", "b"] = "a, b"

commaSeparate ["Monday", "Tuesday", "Wednesday", "Thurssday" ]

= "Monday, Tuesday, Wednesday, Thursday"

3. Write a function deleteAll :: (Eq a) => a -> ([a] -> [a]) that takes an item (of a
type that is an instance of the Eq class) and a list, and returns a list just like the argument
list, but with the each occurrence of the item (if any) removed. For example.

deleteAll 1 [1, 2, 3, 2, 1, 2, 3, 2, 1] = [2, 3, 2, 2, 3, 2]

deleteAll 4 [1, 2, 3, 2, 1, 2, 3, 2, 1] = [1, 2, 3, 2, 1, 2, 3, 2, 1]

deleteAll 3 [1, 2, 3] = [1, 2]

Do this (a) using a list comprehension, and (b) by writing out the recursion yourself. Sub-
mit both solutions (and please call the first one aDeleteAll and the second version bDeleteAll,
so you don’t have to put them in separate files).

4. Write a function deleteSecond :: (Eq a) => a -> ([a] -> [a]) that takes an item (of
a type that has an == function dened for it) and a list, and returns a list just like the
argument list, but with the second occurrence of the item (if any) removed. For example.

deleteSecond 1 [1, 2, 3, 2, 1, 2, 3, 2, 1] = [1, 2, 3, 2, 2, 3, 2, 1]

deleteSecond 4 [1, 2, 3, 2, 1, 2, 3, 2, 1] = [1, 2, 3, 2, 1, 2, 3, 2, 1]

deleteSecond 3 [1, 2, 3] = [1, 2, 3]

1



CS344: Programming Languages Homework 7 Spring 2014

5. Write a function associated :: (Eq a) => a -> [(a,b)] -> [b] which takes a value of
some type (call this input x) and a list of tuples whose first element is of x’s type. It should
pull out all elements of list whose second tuple element are the same as x and return a list of
these values.

For example:

associated 3 [(3,4), (5,7), (3,6), (9,3)] = [4, 6]

associated 2 [(1,a), (3,c), (2,b), (4,d)] = [b]

associated c (zip [c, c ..] [1, 2 ..]) = [1, 2 ..]

2


