CS344: Programming Languages Homework 4

Required Problems

- 1. Give context-free grammars generating the following languages:
 - (a) $L_1 = \{a^n b^p \mid 0 \le p < n\}.$
 - (b) $L_2 = \{ a^n b^n c^m d^m \mid n, m \in \mathbb{N} \}$
- 2. Convert your two grammars from problem 1 to Chomsky Normal Form using the conversion algorithm given in class.
- 3. Give a (relatively simple) LL(1) grammar for the language which consists of all strings of properly balanced parenthesis and brackets. Use your grammar to construct a parse tree for the string ([]([]))[](()).
- 4. Consider the following grammar (where non-terminals are in italics):

stmt	\rightarrow	assignment
	\rightarrow	$subroutine_call$
assignment	\rightarrow	id := expr
$subroutine_call$	\rightarrow	id (arg_list)
expr	\rightarrow	$primary \; expr_tail$
$expr_tail$	\rightarrow	$op \ expr$
	\rightarrow	ϵ
primary	\rightarrow	id
	\rightarrow	$subroutine_call$
	\rightarrow	(expr)
op	\rightarrow	+ - * /
arg_list	\rightarrow	$expr \ arg_tail$
arg_tail	\rightarrow	$, arg_list$
	\rightarrow	ϵ

- (a) Construct a parse tree for the input foo(a,b).
- (b) Give a canonical (rightmost) derivation of this same string.
- (c) Prove the grammar is not LL(1).
- (d) Modify the grammar so that it is LL(1).