
A Transition Guide from Python 2.x to C++

Michael H. Goldwasser David Letscher

Saint Louis University

January 2011 revision

All rights reserved by the authors.

This is a supplement to the book

Object-Oriented Programming in Python,

Prentice-Hall, 2007

ISBN-13: 978-0136150312.

1

Contents

1 The Purpose of this Guide 4

2 A Choice of High-Level Programming Languages 4

2.1 Convenience versus Efficiency . 4
2.2 Interpreter versus Compiler . 5
2.3 Dynamic versus Static Typing . 6
2.4 History of C++ . 7

3 A First Glance at C++ 7

3.1 Superficial Differences . 7
3.2 Static Typing . 9
3.3 Input and Output . 9
3.4 Executing a Program . 10

4 Data Types and Operators 11

4.1 Primitive Data Types . 11
4.2 Arrays . 12
4.3 Strings . 12
4.4 Declarations and Initialization . 14
4.5 Operators . 16
4.6 Converting Between Types . 18

5 Control Structures 19

5.1 While Loops . 19
5.2 Conditionals . 19
5.3 Nonboolean Expressions as Conditions . 19
5.4 For Loops . 20
5.5 Defining a Function . 21

6 Input and Output 22

6.1 Necessary Libraries . 22
6.2 Console Output . 23
6.3 Formatted Output . 23
6.4 Console Input . 25
6.5 File Streams . 27
6.6 String Streams . 28

7 Classes in C++ 29

7.1 Using Instances of a Class . 29
7.2 Defining a Class . 30
7.3 Inheritance . 34

8 Object Models and Memory Management 37

8.1 Value Variables . 37
8.2 Reference Variables . 38
8.3 Pointer Variables . 40
8.4 Dynamic Memory Management . 41

2

8.5 Treatment of Arrays . 42
8.6 Constructors, Destructors, and the Assignment Operator 44

9 Generic Programming and Templates 48

9.1 Templated Functions . 48
9.2 Templated Classes . 50
9.3 Using Templated Functions and Classes . 53

10 C++ Containers and the Standard Template Library 53

10.1 The vector Class . 54
10.2 Other STL Classes . 54
10.3 Iterators . 55

11 Error Checking and Exceptions 57

11.1 Overview . 57
11.2 Throwing an Exception . 57
11.3 Catching an Exception . 57
11.4 Other Approaches to Error-Handling . 58

12 Managing Large Projects 60

12.1 Compilation and Linking . 61
12.2 Avoiding Multiple Definitions . 62
12.3 Namespaces . 63
12.4 Managing Class Definitions . 64
12.5 Managing Templated Classes . 65
12.6 Unit Testing . 67
12.7 Documentation . 68

A Full Source Code 69

A.1 Tally Sheet and Frequency Counting . 69
A.2 Mastermind . 69

3

2. A CHOICE OF HIGH-LEVEL PROGRAMMING LANGUAGES Page 4

1 The Purpose of this Guide

Python is a wonderful programming language, yet many other programming languages are also used
by software developers. Each language has its own strengths and weaknesses, and professionals must
become accustomed to programming in different languages. Fortunately, once a person has a solid
foundation in one language, it becomes easier to transition to another language. This guide is
designed for Python programmers choosing C++ as a second language. C++ is a widely used
language in industry and, as an object-oriented language, it has much in common with Python.
Yet there exist significant differences between the two languages.

This transition guide is not meant to serve as a complete, self-contained reference for C++.
Our goal is to provide an initial bridge, built upon the knowledge and terminology introduced in
our book Object-Oriented Programming in Python. We begin in Section 2 by providing a high-
level discussion of programming languages and the more significant differences between Python
and C++. Section 3 provides our first direct comparison between source code in Python and
C++. In remaining sections, we undertake a detailed examination of aspects of the C++ language
including control structures, input and output, user-defined classes, differences between Python
and C++’s object models, use of containers and generics, and good software practices. A final
appendix includes complete C++ source code for several projects modeled upon Python versions
from our book. With that said, let the tour begin.

2 A Choice of High-Level Programming Languages

Chapter 1.3 of our book describes the distinction between low-level and high-level programming
languages. At its core, a computing architecture supports an extremely limited set of data types
and operations. For this reason, we describe a CPU’s machine language as a low-level programming
language. It is possible to develop software directly for that machine language. In fact, this is
often done for specialized applications where execution speed is of utmost concern. However, it
is extremely inconvenient to develop complex software systems in a low-level language. High-level
programming languages were conceived to better support a programmer’s expressiveness, thereby
reducing the development time of software systems, providing greater opportunity for code reuse,
and improving the overall reliability and maintainability of software.

2.1 Convenience versus Efficiency

In effect, high-level languages offer convenience. They support a greater range of data types and a
richer syntax for expressing a series of operations. Yet this additional support is somewhat artificial.
In the end, the software must be translated back to a CPU’s machine language in order to execute
on that computer. For high-level languages, this translation has been automated in the form of a
compiler or interpreter. As a result, software written in a high-level language is no more powerful
than equivalent software that could be written directly in the low-level language (given enough
time and expertise). The convenience afforded by a high-level language may come at the expense
of some slight inefficiencies in the performance of the resulting software. The automated translation
from high level to low level has been carefully optimized, but still the generated low-level code is
not always as streamlined as code crafted directly by an expert in the field. Yet as a society, we
cannot afford to have each and every piece of software hand-crafted in a low-level language.

A more significant concern is software development time, that is, the time it takes to carry
an idea from the initial inspiration to the final product. The design and development of quality
software applications is extremely labor-intensive and can take months or years depending on the

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

2. A CHOICE OF HIGH-LEVEL PROGRAMMING LANGUAGES Page 5

project. The single biggest factor in the cost of a software project is employing the developers.
So there is great benefit in use of a high-level language that can better support abstractions and
thereby reduce the overall development cycle.

More than a thousand high-level languages have been developed over time, with perhaps a
hundred that are still actively used for program development. What makes each language unique is
the way in which concepts are abstracted and expressed. Object orientation is but one paradigm for
program development, and even within the object-oriented framework there are differences between
languages. No single language is perfect, and each strikes its own balance in trying to support the
development of efficient, maintainable, and reusable software. In the remainder of this section, we
discuss general aspects of programming language theory, and the most significant ways in which
Python and C++ differ.

2.2 Interpreter versus Compiler

An important aspect of any high-level language is the process by which it is translated back to the
low-level machine code to be executed. Python is an example of an interpreted language. We “run”
a typical Python program by feeding its source code as input to another piece of software known
as the Python interpreter. The Python interpreter is the software that is actually executing on the
CPU. It adapts its outward behavior to match the semantics indicated by the given source code.
In effect, the translation from the high-level code to low-level operations is performed on-the-fly
while the software is running.

In contrast, C++ is an example of a compiled language. Progressing from the original source
code to a running program is a two-step process. During the first phase (“compile-time”), the source
code is fed as input to a special piece of software known as a compiler. That compiler analyzes the
source code based on the syntax of the language. If there are syntax errors, they are reported and
the compilation fails. Otherwise, the compiler translates the high-level code into machine code for
the computing system, generating another file known as an executable. During the second phase
(“run-time”), the executable is independently started by the user; the compiler is no longer needed
unless a new executable must be generated, for example when a change is made to the original
source code. Yet the compiled executable is catered to one particular machine language; different
versions of the executable must be distributed for use on different computing platforms.

The greatest advantage of the compilation model is execution speed. In essence, the more that
can be handled at compile-time, the less work there is to be done at run-time. By performing the
full translation to machine code in advance, the execution of the software is streamlined so as to
perform only those computations that are a direct part of the software application. A secondary
advantage is that the executable can be distributed to customers as free-standing software (i.e.,
without need for an installed interpreter), and without exposing the original source code that was
used to generate it (although some companies choose to “open source” their software).

For a purely interpreted language, there is no distinction between compile-time and run-time.
The interpreter bears the burden of translating the original source code as part of the run-time
process. The same source code can be distributed for use on different computing platforms, yet
each computer must have a valid interpreter installed on its system. The primary advantage of
an interpreted language is greater platform-independence. The use of an interpreter can also ease
some aspects of software development. For example, we have readily used Python’s interpreter
not just as a means for running a final version of a program, but to provide useful feedback and
interaction when problems arise. The compiler can be helpful in detecting purely syntactical errors
at compile-time, but it is no longer of use when run-time errors occur.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

2. A CHOICE OF HIGH-LEVEL PROGRAMMING LANGUAGES Page 6

2.3 Dynamic versus Static Typing

For compiled languages, there is an advantage in doing as much work as possible at compile-time so
as to streamline the run-time process. It is this fact that motivates the single greatest distinction
between Python and C++. Python is a dynamically-typed language. An identifier can be assigned
to an underlying value, within a given scope, using an assignment statement such as

age = 41

We happen to know that age is being assigned to an integer value in this case, yet we did not make
any syntactic declaration regarding the data type. That same identifier could later be reassigned
to the string 'Stone'. Types are not formally associated with the identifiers, but rather with the
underlying objects (in effect, the value 41 “knows” that it is an integer). When identifiers are used
in expressions, the legitimacy depends upon the type of the underlying object. The expression
age + 1 will be valid when age is an integer yet invalid when age is a string. The method call
age.lower() will be legal when age is a string yet illegal when age is an integer.

In Python, these expressions are evaluated at run-time. When encountering an expression such
as age.lower(), the interpreter determines whether the object currently associated with the name
age supports the syntax lower(). If so, the expression is evaluated successfully; if not, a run-
time error occurs. The same principle of dynamic typing applies to the declaration of functions.
The formal parameters in the signature serve as placeholders for the required number of actual
parameters, yet there is no explicit statement of type; these identifiers are assigned to the actual
objects sent by the caller at run-time. Class definitions also rely on dynamic typing for the data
members, which are generally initialized in the constructor but never explicitly declared.

Python style of waiting until run-time to evaluate the legitimacy of commands is known as
“duck typing” (if it walks like a duck and quacks like a duck, then for all intents and purposes it is
a duck). This flexibility allows for various forms of polymorphism. For example, the sum function
accepts a parameter that is assumed to be a sequence of numbers. It works whether that sequence is
in the form of a list, a tuple, or a set, so long as the parameter is iterable. Yet Python also allows you
to query the type of an object at run-time, allowing for another form of polymorphism. A function
can vary its behavior based upon the type of an actual parameter. For example in Chapter 6.2 of
our book we provided a Point. mul implementation that specialized the multiplication semantics
depending upon whether the actual parameter was a scalar value or another point.

C++ is a statically-typed language. An explicit type declaration is required for every identifier.
The following demonstrates a type declaration followed by an assignment.

int age;
age = 41;

The first line is a declaration that establishes the identifier age as an integer value in the current
scope, and the second line is an assignment statement that sets the value of the variable (it is also
possible to initialize the value as part of a declaration statement; see Section 4.4 for details). Type
declarations apply in many contexts. For example, a function signature must include explicit type
declarations for all formal parameters, as well as for the resulting return type. All data members
must be explicitly typed as part of a class definition.

The reason for requiring programmers to make such declarations is that it allows for significantly
more work to be done at compile-time rather than run-time. For example the legality of the
subsequent assignment age = 41 is apparent at compile-time based upon knowledge of the data
type. In similar spirit, if a programmer attempts to send a string to a function that expects

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

3. A FIRST GLANCE AT C++ Page 7

a floating-point number as in sqrt("Hello"), this error can be detected at compile-time. Type
declarations also help the system in better managing the use of memory.

The choice between dynamically versus statically-typed languages is often (though not always)
paired with the choice between interpreted and compiled languages. The primary advantage of
static typing is the earlier detection of errors; this early detection is more significant with a compiled
language, for which there is a distinction between compile-time errors and run-time errors. Even if
static typing is used in a purely interpreted language, those errors will not arise until the program is
executed. The primary advantages of dynamic typing are the reduced syntactical burden associated
with explicit declarations together with more direct support for polymorphism.

2.4 History of C++

C++ is a direct extension of an earlier programming language named C. The C programming
language was introduced in 1973 and widely used for software development for decades (in fact,
its use is still prevalent). Its greatest strength is its run-time efficiency, however it is not object-
oriented. In the early 1980s, developers at Bell Labs began work on C++, adding support for
object orientation while preserving aspects of the original syntax of C. As a result, C++ provides
a more robust set of existing libraries while still providing the ability to create fast executables.

C and C++ provide great flexibility in controlling many of the underlying mechanisms used
by an executing program. A programmer can control low-level aspects of how data is stored, how
information is passed, and how memory is managed. When used properly, this control can lead
to a more streamlined result. Furthermore, because of the long history of C and C++ and their
widespread use, the compiler technology has been highly optimized.

The greatest weakness of C++ is its complexity. Ironically, this weakness goes hand-in-hand
with the very issues that we described as strengths of the language. With decades of prominence,
its evolution has been somewhat restricted by the desire to remain backward compatible in support
of the large body of existing software. Some additional features have been retrofitted in a more
awkward way than if the language had been developed with a clean slate. As a result, parts of the
syntax have grown cryptic. More significantly, the flexibility given to a programmer for controlling
low-level aspects comes with responsibility. Rather than one way to express something, there may
be five alternatives. An experienced and knowledgeable developer can use this flexibility to pick
the best alternative and improve the result. Yet both novice and experienced programmers can
easily choose the wrong alternative, leading to less efficient or flawed software.

3 A First Glance at C++

As our first example, Figure 1 presents a side-by-side view of corresponding Python and C++
programs. Both ask the user to enter two integers, computing and displaying their greatest common
denominator. In this section, we highlight some difference between the two languages.

3.1 Superficial Differences

We first draw attention to the use of punctuation in C++ for delimiting the basic syntactic structure
of the code. An individual command in Python (e.g., u = v) is followed by a newline character,
designating the end of that command. In C++, each statement must be explicitly terminated with
a semicolon. For example, we see the semicolon after the command u = v on line 10.

There is also a difference in designating a “block” of code. In Python, each block is preceded by
a colon, with indentation subsequently used to designate the extent of a multi-line block. In C++,

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

3. A FIRST GLANCE AT C++ Page 8

Python C++

1 def gcd(u, v):
2 # we will use Euclid's algorithm
3 # for computing the GCD
4 while v != 0:
5 r = u % v # compute remainder
6 u = v
7 v = r
8 return u
9

10 if name == '__main__':
11 a = int(raw input('First value: '))
12 b = int(raw input('Second value: '))
13 print 'gcd:', gcd(a,b)

1 #include <iostream>

2 using namespace std;
3
4 int gcd(int u, int v) {
5 /* We will use Euclid's algorithm
6 for computing the GCD */
7 int r;
8 while (v != 0) {
9 r = u % v; // compute remainder

10 u = v;
11 v = r;
12 }
13 return u;
14 }
15
16 int main() {
17 int a, b;
18 cout << "First value: ";
19 cin >> a;
20 cout << "Second value: ";
21 cin >> b;
22 cout << "gcd: " << gcd(a,b) << endl;
23 return 0;
24 }

Figure 1: Programs, written in Python and C++, for computing a greatest common denominator.

these blocks of code are explicitly enclosed in curly braces { }. The body of the while loop in the
C++ version consists of everything from the opening brace at the end of line 8 until the matching
right brace on line 12. That loop is itself nested within the function body that begins with the left
brace on line 4 and concludes with the right brace on line 14.

For the most part, the use of whitespace is irrelevant in C++. Although our sample code is
spaced with one command per line and with indentation to highlight the block structure, these are
not formal requirements of the language syntax. For example, the definition of the gcd function
could technically be expressed in a single line as follows:

int gcd(int u, int v) { int r; while (v != 0) { r = u % v; u = v; v = r; } return u; }

To the compiler, this is the same definition as our original. Of course, to a human reader this
version is nearly incomprehensible. So as you transition from Python, we ask that you continue
using whitespace to make your source code legible.

This first example demonstrates a few other superficial differences. C++ requires the boolean
condition for a while loop to be expressed within parentheses (see line 8). We do not need to do
so in Python (see line 4), although parentheses can be used optionally. We also see a difference
in the symbols used when providing inlined comments. In Python, the # character is used to

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

3. A FIRST GLANCE AT C++ Page 9

designate the remainder of the line as a comment. Two different commenting styles are allowed in
C++. An inlined comment is supported using the // pattern, as seen at line 9. Another style is
demonstrated on lines 5 and 6, starting with the /* pattern, and ending with the */ pattern. This
style is particularly convenient as it can span multiple lines of source code.

3.2 Static Typing

The more significant differences between the Python and C++ versions of our example involve the
distinction between dynamic and static typing, as we originally discussed in Section 2.3. Even in
this simple example, there are three distinct manifestations of static typing. The formal parameters
(i.e., identifiers u and v) are declared without any explicit type designation in the Python signature
at line 1. In the corresponding declaration of parameters in the C++ signature, we find explicit
type declaration for each parameter within the syntax gcd(int u, int v). This information serves
two purposes for the compiler. First, it allows the compiler to check the legality of the use of u and
v within the function body. Second, it allows the compiler to enforce that integers be sent when
the function is called (as at line 22).

The second manifestation of static typing is the explicit designation of the return type as part of
a formal signature in C++. In line 4 of our C++ example, the declaration int at the beginning of
the line labels gcd as a function that returns an integer. Again, the compiler uses this designation
to check the validity of our own code (namely that we are indeed returning the correct type of
information at line 13), as well as to check the caller’s use of our return value. For example, if the
caller invokes the function as part of an assignment g = gcd(54,42), this would be legal if variable g
has been declared as an integer or compatible numeric type, yet illegal if g were a string.

Finally, we note the declaration of variable r at line 7 of our C++ code. This designates r as
a local variable representing an integer, allowing its use at lines 9 and 11. Had we omitted the
original declaration, the compiler would report an error “cannot find symbol” regarding the later
use of r (the analog of a NameError in Python). Formally, a declared variable in C++ has scope
based upon the most specific set of enclosing braces at the point of its declaration. In our original
example, the variable r has scope as a local variable for the duration of the gcd function body
(as is also the case with our Python version). Technically, since this variable’s only purpose is for
temporary storage during a single invocation of the while loop body, we could have declared it
within the more narrow scope of the loop body (Python does not support such a restricted scope).

3.3 Input and Output

Python and C++ differ greatly in the techniques used to support the gathering of input and
production of output. We will discuss this topic more thoroughly in Section 6, but for now we
examine the use of input and output in our first example from Figure 1. In both programs, the
goal is to read two integers and then to display the result.

We begin by examining the corresponding commands that display the result. In Python, the
built-in print command is used at line 13 to display the string 'gcd:' followed by the return value
of the function call gcd(a,b). We rely on the fact that the print command automatically inserts an
extra space between the two arguments and a newline character after the final argument.

In C++, input and output is generally managed through an abstraction known as a “stream.”
The definition of a stream must be explicitly imported from a standard library. In our first C++
example, lines 1 and 2 are used to load the necessary definitions into our context. The actual display
of the result is accomplished by line 22 of that code. The cout identifier represents a special output
stream used to display information to the user console. The << symbol is an operator for inserting

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

3. A FIRST GLANCE AT C++ Page 10

data into that output stream. In this case we insert the string "gcd: ", followed by the return
value of expression gcd(a,b), followed by the identifier endl which represents a newline character.
In contrast to our Python code, we are responsible for explicitly including the separating space as
part of our initial string literal, and for inserting the endline character.

For gathering input, our Python version uses the raw input function at lines 11 and 12. Each
call to that function prompts the user and then reads a single line of input from the keyboard. The
result is returned in the form of a character string. Because we want to interpret that response
as an integer, we explicitly use the int(...) syntax to construct an integer based upon the parsed
string. In C++, we use the cin object to read input from the user console. We must display a
prompt separately, as seen at line 18 (note the lack of an endline character). We then read an
integer from the user at line 19 with the command cin >> a. The >> operator is used to extract
information from the stream into a variable. Here, we see an advantage of C++’s static typing.
We do not need to explicitly convert the read characters into an integer. The conversion is implicit
because variable a was already declared to have type int.

3.4 Executing a Program

Finally, we examine the treatment of the overall program and the different language models for
executing code. Starting with Python, let us assume that the source code is saved in a file gcd.py.
The Python program is executed by starting the Python interpreter while designating the source
code file. For example, if working directly with the operating system, we might issue the command

python gcd.py

The interpreter then begins reading commands from the source code. In the case of our example,
the interpretation of lines 1–8 results in the definition of (but not the calling of) the gcd function.
The interpreter continues by executing the body of the if name == '__main__' conditional at
lines 10–13. Technically, we could have written this script omitting the conditional at line 10,
with the subsequent commands at the top-level context. The advantage of the given style is that
it allows us to differentiate between times when this file is started as the primary source code
and when it is imported as a module from some other context. If the command import gcd were
executed from another context, the definition of the gcd function would be loaded, but lines 11–13
would be bypassed. This special conditional can be used as a unit test when developing a module
that is part of a larger system.

In C++, source code must first be compiled. A popular compiler is distributed by gnu.org and
typically installed on a system as a program named g++. If our source code were saved in a file
named gcd.cpp, the compiler could be invoked from the operating system with the command,

g++ -o gcd gcd.cpp

The compiler will report any syntax errors that it finds. If all goes well it produces a new file named
gcd (or gcd.exe with the Windows operating system) that is an executable. It can be started on
the computer just as you would start any other executable. It is also possible to compile C++ code
using an integrated development environment (akin to Python’s IDLE). An IDE typically relies
upon the same underlying compiler, but provides more interactive control of the process.

The flow of control for the execution of a C++ program begins with an implicit call to the
function named main. We see this function definition starting at line 16 of our sample C++ source
code. The int return value for main is a technical requirement. The value is returned to the
operating system at the conclusion of the program. It is up to the operating system to interpret
that value, although zero historically indicates a successful execution while other values are used as
error codes (such a return value can be specified in Python as a parameter to the sys.exit function).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 11

C++ Type Description Literals Python analog

bool logical value true bool

false

short integer (often 16 bits)

int integer (often 32 bits) 39

long integer (often 32 or 64 bits) 39L int

—— integer (arbitrary-precision) long

float floating-point (often 32 bits) 3.14f

double floating-point (often 64 bits) 3.14 float

char single character 'a'

stringa character sequence "Hello" str

Figure 2: The most common primitive data types in C++.
aNot technically a built-in type; included from within standard libraries.

As a final comment, we note that the use of a main function in C++ is not quite the same as the
if name == '__main__' construct in Python. We discussed how the Python technique could
be used to provide a unit test that would be executed when the file is the primary source code,
but ignored when that module was imported from elsewhere. When a project is implemented with
multiple source files in C++, the compiler requires that precisely one of them has a main routine.
As a consequence, the gcd function as provided in our sample gcd.cpp file could not be used as
part of a larger project (because there would be conflicting definitions for main). With a more
typical C++ style, such a utility function would be provided in a file without a main function, and
imported as needed by other applications. We will discuss the development of multifile projects in
Section 12.

4 Data Types and Operators

4.1 Primitive Data Types

Figure 2 provides a summary of common primitive data types in C++, noting the correspondence
to Python’s types. We emphasize the following aspects of that comparison:

� The logical bool type is supported by both languages, although the literals true and false

are uncapitalized in C++ while capitalized in Python. In both languages, boolean values are
stored internally as integers, with false represented using value 0, and true represented as 1.

� C++ offers the programmer more fine-grained control in suggesting the underlying precision
when storing numbers. There exist three fixed-precision integer types: short, int, and long.
However, the precise number of bits devoted to these types is system-dependent, with typical
values shown in Figure 2. Python’s int type is usually implemented with the precision of a
C++ long.

Note that Python’s long type serves a completely different purpose, representing integers
with unlimited magnitude. There is no such standard type in C++ (although some C++
packages for arbitrary-precision integers are distributed independently).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 12

Each of the integer types has an unsigned variant that represents only nonnegative numbers.
For example, a variable can be declared with type unsigned short. Whereas a (signed) integer
type with b bits has a typical range from −(2b−1) to +(2b−1 − 1), a corresponding unsigned
type would have range from 0 to 2b−1. The greater range of positive numbers can be used for
contexts when a value cannot be negative (such as when describing the size of a container).

� C++ supports two different floating-point types, float and double, with a double historically
represented using twice as many bits as a float. In C++, the double is most commonly used
and akin to what is named float in Python.

� C++ supports two different types for representing text. The char type provides an efficient
representation of a single character of text, while the string class serves a purpose similar to
Python’s str class, representing a sequence of characters (which may happen to be an empty
string or a single-character string). To distinguish between a char and a one-character string,
a string literal must be designated using double quote marks (as in "a"). The use of single
quotes is reserved for a char literal (as in 'a'). An attempt to misuse the single-quote syntax,
as in 'impossible', results in a compile-time error.

4.2 Arrays

Python provides several built-in classes (e.g., list, set, dict) for managing a collection of objects.
Similar container classes can be found in C++’s standard libraries (see Section 10), but those
classes are not technically built-in types in C++. The only core support for containers in C++ is
a lower-level structure known as an array, which has its origin in the C programming language (in
fact all of the built-in types for C++ were defined for C).

An array is a contiguous chunk of memory used to store a data sequence. What makes an array
different from a structure such as a Python list is that the size of the array must be fixed when
the array is constructed and that the contents of the array must have the same data type. As with
Python, C++ arrays are zero-indexed and rely on the syntax of square brackets for indexing. For
example, if measurements is a variable representing an array of double values, then the expression
measurements[7] is used to access the double at index 7 of the sequence (that is, the eighth entry).

4.3 Strings

From a technical point of view, the string class is not a built-in type; it must be included from
among the standard C++ libraries. In the earlier C language, a character sequence was represented
directly with a char array. With the adoption of object-orientation in C++, the string class was
introduced. A string instance uses a character array for storage behind the scene, but provides
more robust support for convenient behaviors.

Although the formal methods of the C++ string class are not quite the same as the Python
str class, many behaviors are common. However, in contrast with Python’s immutable str class,
a C++ string is mutable. So the expression s[index] can be used to access a particular character,
or to alter that character with an assignment s[index] = newChar. There is a similar discrepancy
between the C++ syntax s.append(t), which mutates instance s by appending the contents of
string t, and the syntax s+t, which produces a concatenation as a third string, leaving the two
original strings unchanged. A summary of the most commonly used string operations is given in
Figures 3 and 4, with Figure 3 describing the nonmutating behaviors and Figure 4 describing the
mutating behaviors. We note that the method s.c str() can be used to produce a C-style character
array, which is sometimes needed when working with legacy code.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 13

Syntax Semantics

s.size() Either form returns the number of characters in string s.
s.length()

s.empty() Returns true if s is an empty string, false otherwise.

s[index] Returns the character of string s at the given index
(unpredictable when index is out of range).

s.at(index) Returns the character of string s at the given index
(throws exception when index is out of range).

s == t Returns true if strings s and t have same contents, false otherwise.

s < t Returns true if s is lexicographical less than t, false otherwise.

s.compare(t) Returns a negative value if string s is lexicographical less than string t, zero if
equal, and a positive value if s is greater than t.

s.find(pattern) Returns the least index (greater than or equal to index pos, if given), at which
s.find(pattern, pos) pattern begins; returns string::npos if not found.

s.rfind(pattern) Returns the greatest index (less than or equal to index pos, if given) at which
s.rfind(pattern, pos) pattern begins; returns string::npos if not found.

s.find first of(charset) Returns the least index (greater than or equal to index pos, if given) at which a
s.find first of(charset, pos) character of the indicated string charset is found; returns string::npos if not found.

s.find last of(charset) Returns the greatest index (less than or equal to index pos, if given) at which a
s.find last of(charset, pos) character of the indicated string charset is found; returns string::npos if not found.

s + t Returns a concatenation of strings s and t.

s.substr(start) Returns the substring from index start through the end.

s.substr(start, num) Returns the substring from index start, continuing num characters.

s.c str() Returns a C-style character array representing the same sequence of characters as s.

Figure 3: Nonmutating behaviors supported by the string class in C++.

Syntax Semantics

s[index] = newChar Mutates string s by changing the character at the given index to the new character
(unpredictable when index is out of range).

s.append(t) Mutates string s by appending the characters of string t.

s += t Same as s.append(t).

s.insert(index, t) Inserts copy of string t into string s starting at the given index.

s.insert(index, num, c) Inserts num copies of character c into string s starting at the given index.

s.erase(start) Removes all characters from index start to the end.

s.erase(start, num) Removes num characters, starting at given index.

s.replace(index, num, t) Replace num characters of current string, starting at given index, with the first num
characters of t.

Figure 4: Mutating behaviors supported by the string class in C++.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 14

4.4 Declarations and Initialization

We have emphasized that C++ is a statically-typed language and that the type of each variable
must be explicitly declared before use. We saw several examples of type declarations in our first
glance of C++, such as the declaration of local variable r within the gcd function at line 7 of Figure 1,

int r;

It is possible to declare several variables of the same type in a single declaration. For example,
line 17 of that same program declared the variables a and b within the main function as follows,

int a,b;

A declaration alerts the C++ compiler as to the type of data that will be stored by the named
variable. This allows it to verify subsequent syntax at compile-time. Knowledge of the data type
also allows the system to reserve the appropriate amount of memory for representing an instance
of the type. It is important to note that the system does not necessarily initialize the variable. For
primitive types, the initial value is indeterminate, as it is based upon the previous setting of the
newly reserved bits of memory. While it could be initialized using a separate assignment statement,
we prefer the use of what we term the constructor syntax when the initial value is known at the
time of the declaration. An example of the syntax is

int age(41);

This declares a new integer variable age, yet initializes it to have the indicated value 41. When
using this syntax, the indicated initial value need not be a literal. We can use any valid expression
to designate the initial value, such as,

int age(curYear − birthYear);

We can initialize multiple variables of a common type in a single declarations, as in

int age(41), zipcode(63103); // two new variables

Although we noted that declared variables of primitive types are not automatically initial-
ized, a declared variable of a class type will be initialized by automatically invoking a form of that
class’s constructor. Using the string class as an example, consider the following three declarations.

string response; // guaranteed to be the empty string ””
string greeting("Hello"); // initialized to ”Hello”
string rating(3, 'A'); // initialized to ”AAA”

The first version invokes what is known as the default constructor for the class. This is a zero-
parameter version of the constructor, which in the case of strings produces an empty string. The sec-
ond of these lines formally invokes the constructor with a single parameter, the character sequence
"Hello". The third example invokes a two-parameter form of the string constructor, resulting in a
sequence of n consecutive copies of a given character. We will revisit this syntax and its connection
to constructors of a class in Section 7.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 15

Arrays

If the desired size of an array is known at compile time, it can be declared using a syntax such as

double measurements[300];

This declares the name measurements to be an array of doubles and causes the system to allocate
memory for storing precisely 300 entries. However, the values of the individual entries are indeter-
minate (just as when declaring a single double). Typically, the declaration of such an array might
be followed by a loop to initialize the entries to meaningful values. Yet it is possible to initialize
values of an array as part of the declaration, using a syntax such as the following.

int daysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Notice that we did not explicitly give the size of the array between the square brackets; it will be
implicitly set based on the number of indicated entries. If we had given an explicit size for the
array that was larger than the indicated initialization list, the beginning of the array will be filled
in using the specified values and the rest is set to zero. In the special case of an array of characters,
it is possible to initialize the array using a literal, as follows.

char greeting[] = "Hello";

As a technicality, this becomes an array with size 6 because all C-style character sequences are
explicitly terminated with an extra zero-value to designate the end of the sequence.

In the case of class types, the declaration of an array causes not only the allocation of memory
but the default initialization of each individual entry. For example, in the following declaration all
entries of the array are guaranteed to be initialized to empty strings.

string messages[20];

Thus far, we have only demonstrated array declarations for which the size of the array was
known at compile time. In Section 8.5 we will present an approach for dynamically allocating
arrays at run-time.

Mutability

Python and C++ have very different approaches to the concept of mutability. For built-in types,
Python makes a clear distinction between which are mutable and which are immutable. For exam-
ple, it offers a list class for representing mutable sequences, and a tuple class for representing
immutable sequences (a similar discrepancy exists between the set and frozenset classes).

C++ takes a different approach. All types are assumed to be mutable, but particular instances
can be designated as immutable by the programmer. Furthermore, the immutability is strictly
enforced by the compiler. Syntactically, the immutability is declared using the keyword const in
specific contexts. For example, a new variable can be declared as a constant, as in

const int age(41); // immortality

With this declaration, any subsequent attempt to change that value results in a compile-time
error (e.g., age++). While a programmer may declare a non-const variable yet leave its value
unchanged, the explicit declaration of const in this context allows the compiler to better optimize

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 16

the program. It also serves as a meaningful label for another programmer who is reading the code.
More significant uses of the const keyword arise when describing the treatment of parameters in
function signatures, or the effect of method calls upon the state of an object. We will discuss those
uses in later sections.

4.5 Operators

Figure 5 provides a comparison between the operators supported by Python and C++. The oper-
ators are largely the same between the two languages, but there are some notable discrepancies.

Numeric types

For numeric values, Python differentiates between true division (i.e., /), integer division

(i.e., //), and modular arithmetic (i.e., %), as originally discussed in Chapter 2.4 of our book.
C++ supports operators / and %, but not // (in fact we already saw this symbol used to designate
inline comments in C++). The semantics of the / operator depends upon the type of operands.
When both operands are integral types, the result is the integer quotient; if one or both of the
operands are floating-point types, true division is performed. To get true division with integral
types, one of the operands must be explicitly cast to a float (see Section 4.6).

Both Python and C++ support an operator-with-assignment shorthand for most binary opera-
tors, as with x += 5 as a shorthand for x = x + 5. Yet, C++ supports an additional ++ operator
for the common task of incrementing a number by one. In fact, there are two distinct usages known
as pre-increment (e.g., ++x) and post-increment (e.g., x++). Both of these add one to the
value of x, but they can be used differently in the context of a larger expression. For example,
if indexing a sequence, the expression groceries[i++] retrieves the entry based upon the original
index i, yet subsequently increments that index. In contrast, the syntax groceries[++i] causes the
value of the index to be incremented before accessing the associated entry of the sequence. Similar
support exists for decrementing a value by one with the −− operator. The pre- and post- versions
of these operators are valuable tools for an experienced programmer, but their use leads to subtle
code and potential mistakes. We recommend that they be used in isolated contexts until mastered.

Boolean operators

While Python uses the words and, or, and not for the basic logical operators, C++ relies on
the respective symbols &&, ||, and ! (although some C++ compilers now support such named
operators). The history of those symbols dates back to the C language. It is important not to
confuse the logical operators && and || with the bitwise operators & and |.

Another pitfall for Python programmers converting to C++ is use of a syntax such as a < b < c
for numeric types. In Python, operators can be chained in such an expression that is true if both
a < b and b < c. In C++, this logic must be expressed as a < b && b < c. The more significant
problem is that a < b < c is legal C++ syntax, yet with unexpected semantics. This is parsed as
(a < b) < c. The boolean expression (a < b) evaluates to either false or true. However, that result
will be coerced into the integer 0 or 1 for the comparison with c. The result of the full expression
then depends upon whether c is greater than that 0 or 1 value.

Class types

By default, most operators cannot be used with instances of a class type. However C++ allows
the author of a class to provide specialized semantics for operators, when desired. As an example,

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 17

Arithmetic Operators

Python C++ Description

−a −a (unary) negation

a + b a + b addition

a − b a − b subtraction

a * b a * b multiplication

a ** b⊲ exponentiation

a / b a / b standard division (depends on type)

a // b⊲ integer division

a % b a % b modulus (remainder)

++a⊲ pre-increment operator

a++⊲ post-increment operator

−−a⊲ pre-decrement operator

a−−⊲ post-decrement operator

Boolean Operators

and &&⊲ logical and

or ||⊲ logical or

not !⊲ logical negation

a if b else c b ? a : c⊲ conditional expression

Comparison Operators

a < b a < b less than

a <= b a <= b less than or equal to

a > b a > b greater than

a >= b a >= b greater than or equal to

a == b a == b equal

a < b < c a < b && b < c⊲ chained comparison

Bitwise Operators

˜a ˜a bitwise complement

a & b a & b bitwise and

a | b a | b bitwise or

a ˆ b a ˆ b bitwise XOR

a << b a << b bitwise left shift

a >> b a >> b bitwise right shift

Figure 5: Python and C++ operators, with differences noted by ⊲ symbol.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

4. DATA TYPES AND OPERATORS Page 18

the string class overloads the + operator so that the expression s + t results in a new string that
is the concatenation of existing strings s and t. Yet the expression s * 3 is illegal when s is a string,
because no such behavior is defined for the C++ string class (in contrast to Python, which supports
such an operator for the str class). The syntax for defining overloaded operators in C++ will be
introduced in Section 7.2, when we discuss the robust version of our user-defined Point class.

4.6 Converting Between Types

In Python, we saw several scenarios in which implicit type conversion is performed. For example,
when performing the addition 1.5 + 8 the second operand is coerced into a floating-point represen-
tation before the addition is performed.

There are similar settings in which C++ implicitly casts a value to another type. Because of
the static typing, additional implicit casting may take place when assigning a value of one type to
a variable of another. Consider the following example:

int a(5);
double b;
b = a; // sets b to 5.0

The final command causes b to store a floating-point representation of the value 5.0 rather than the
integer representation. This is because variable b was explicitly designated as having type double.
We can also assign a double value to an int variable, but such an implicit cast may cause the loss
of information. Saving a floating-point value into an integer variable causes any fractional portion
to be truncated.

int a;
double b(2.67);
a = b; // sets a to 2

There are other scenarios in which C++ implicitly converts between types that would not normally
be considered compatible. Some compilers will issue a warning to draw attention to such cases, but
there is no guarantee.

On a related note, there are times when we want to force a type conversion that would not
otherwise be performed. Such an explicit cast is done using a syntax similar to Python, where
the name of the target type is used as if a function.

int a(4), b(3);
double c;
c = a/b; // sets c to 1.0
c = double(a)/b; // sets c to 1.33

The first assignment to c results in 1.0 because the coercion to a double is not performed until
after the integer division a/b is performed. In the second example, the explicit conversion of a’s
value to a double causes a true division to be performed (with b implicitly coerced). However, we
cannot use this casting syntax to perform all type conversions. For example, we cannot safely mimic
Python’s approach for converting a number to a string, as with str(17), or to convert a string to
the corresponding number, as with int("17"). Unfortunately, conversions back and forth between
strings require more advanced techniques. We will discuss one such approach in Section 6.6 using
an object known as a stringstream.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

5. CONTROL STRUCTURES Page 19

5 Control Structures

5.1 While Loops

We demonstrated an example of a while loop as part of our first example in Section 3. The logic is
similar to Python, but with superficial differences in syntax. Most notably, parentheses are required
around the boolean condition in C++. In that first example, curly braces were used to delimit the
commands that comprise the body of the loop. Technically those braces are only needed when the
body uses two or more distinct statements. In the absence of braces, the next single command is
assumed to be the body.

C++ also supports a do-while syntax that can be a convenient remedy to the “loop-and-a-half”
problem, as seen with while loops on page 165 of our book. Here is a similar C++ code-fragment
for requesting a number between 1 and 10, repeating until receiving a valid choice:

int number;
do {

cout << "Enter a number from 1 to 10: ";
cin >> number;

} while (number < 1 || number > 10);

Please note that we have not properly handled the exceptional case when a noninteger is entered.

5.2 Conditionals

A basic if statement is quite similar in style, again requiring parentheses around the boolean con-
dition and curly braces around a compound body. As a simple example, here is a construct to set
a number to its absolute value.

if (x < 0)
x = −x;

Notice that we did not need braces for a body with one command.
C++ does not use the keyword elif for nesting conditionals, but it is possible to nest a new

if statement within the body of an else clause. Furthermore, a conditional construct is treated
syntactically as a single command, so nesting does not require excessive braces. Our first use
of elif in Python was given on page 145 of Chapter 4.4.2 of our book. That code could be writ-
ten in C++ to mimic Python’s indentation as follows (assuming groceries is an adequate container):

if (groceries.length() > 15)
cout << "Go to the grocery store" << endl;

else if (groceries.contains("milk"))
cout << "Go to the convenience store" << endl;

5.3 Nonboolean Expressions as Conditions

On page 142 of our book, we demonstrate ways in which nonboolean data types can be used in
place of a boolean expression for a conditional statement. C++ also provides support for coercing
certain nonboolean data types in certain contexts. With built-in numeric types, C++ treatment is
similar to Python’s, in that a zero value is coerced as false and any nonzero value as true. So we
might write the following code, assuming that mistakeCount is declared as an integer.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

5. CONTROL STRUCTURES Page 20

if (mistakeCount) // i.e., if (mistakeCount != 0)
cout << "There were " << mistakeCount << " errors" << endl;

For class types, C++ allows the author of the class to determine whether values of that type
can be coerced into a bool (or any other primitive type, for that matter). So it would be possible
to define a container type that mimics Python’s treatment, with empty containers treated as false

and nonempty containers treated as true. We should note, however, that neither the standard
container classes or strings support such coercion in C++.

The implicit conversion from numbers to booleans in C++, together with the treatment of an
assignment statement, is to blame for a common pitfall exemplified by the falling errant code.

double gpa;
cout << "Enter your gpa: ";
cin >> gpa;
if (gpa = 4.0)

cout << "Wow!" << endl;

Do you see the problem? The mistake is the use of the assignment operator (gpa = 4.0) rather
than the equivalence operator (gpa == 4.0). The above code is syntactically valid in C++, but
it does not behave as you might expect. Rather than comparing the inputted value of gpa, that
statement reassigns variable gpa the value of 4.0, essentially overwriting the response given by the
user. Furthermore, C++ considers the value of the assignment expression in the larger context to
be the newly assigned value, which itself is implicitly coerced to a boolean value. Thus, no matter
what the user enters, the gpa is reset to 4.0, coerced to true, and the conditional body is entered.

It is natural to ask why the designers of C and C++ allow such a behavior. One reason is to
support the chaining of assignments using the following syntax.

a = b = 4.0; // assuming both a and b were previously declared

C++ treats this as two separate operations, evaluated from right-to-left, as if written as

a = (b = 4.0);

So b is assigned the value 4.0, and then the new value of b serves as the result of the parenthesized
subexpression. This allows a to be subsequently assigned.

To avoid such a common pitfall, Python disallows use of an assignment statement in the context
of a conditional. Code such as if (gpa = 4.0) results in a syntax error. Python support the chaining
syntax a = b = 4.0 using a different mechanism, just as it does with inequalities like a < b < c.

5.4 For Loops

C++ supports a for loop, but with very different semantics than Python’s. The style dates back to
its existence in C. The original use was to provide a more legible form of the typical index-based

loop pattern described in Chapter 4.1.1 of our book. An example of a loop used to count downward
from 10 to 1 is as follows:

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

5. CONTROL STRUCTURES Page 21

for (int count = 10; count > 0; count−−)
cout << count << endl;

cout << "Blastoff!" << endl;

Within the parentheses of the for loop are three distinct components, each separated by a semicolon.
The first is an initialization step that is performed once, before the loop begins. The second portion
is a loop condition that is treated just as a loop condition for a while loop; the condition is tested
before each iteration, with the loop continuing while true. Finally we give an update statement that
is performed automatically at the end of each completed iteration. The for loop syntax is just a
convenient alternative to a while loop that better highlights the logic in some cases. The previous
example is essentially identical in behavior to the following version:

int count = 10; // initialization step
while (count > 0) { // loop condition

cout << count << endl;
count−−; // update statement

}
cout << "Blastoff!" << endl;

The for loop is far more general. It is possible to express multiple initialization or update steps
in a for loop. This is done by using commas to separate the individual statements (as opposed to
the semicolon that delimits the three different components of the syntax). For example, the sum
of the values from 1 to 10 could be computed by maintaining two different variables as follows:

int count, total;
for (count = 1, total = 0; count <= 10; count++)

total += count;

It is also possible to omit the initialization or update steps, so long as the semicolons remain as
separators. The loop condition is the only strictly required component.

5.5 Defining a Function

Our initial C++ example from Section 3 includes the definition of a gcd function. We emphasized
the need to explicitly designate the type of each individual parameter as well as the return type.
Together with the name of the function, this information is collectively known as the signature

of the function. For example, the signature in our original example was int gcd(int u, int v). This
signature serves as a guide for a potential caller of the function, and it provides sufficient information
for the compiler to enforce proper usage.

Some functions do not require parameters and some do not provide a return value. Without
any parameters, a function definition still requires opening and closing parentheses after the func-
tion name. Functions that do not provide a return value must still designate so by using a special
keyword void in place of a return type. As an example, the following function prints a countdown
from 10 to 1. It does not accept any parameters nor return any value.

void countdown() {
for (int count = 10; count > 0; count−−)

cout << count << endl;
}

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 22

We used an alternative version of this function in Chapter 5.2.2 of our book, to demonstrate the
use of optional parameters in Python. The same technique can be used in C++, with the syntax

void countdown(int start=10, int end=1) {
for (int count = start; count >= end; count−−)

cout << count << endl;
}

This signature will support a calling syntax such as countdown(5,2) to go from 5 to 2, countdown(8)
to go from 8 to 1, or countdown() to go from 10 to 1. There is a technical distinction between Python
and C++ regarding the instantiation of a default parameter. In Python, the default parameter
value is instantiated once upon declaration of the function, and then used when the function is
called. This is occasionally significant, especially when using mutable objects as default values. In
C++, default parameter values are (re)instantiated as needed with each call to the function.

6 Input and Output

Input and output can be associated with a variety of sources within a computer program. For
example, input can come from the user’s keyboard, can be read from a file, or transmitted through
a network. In similar regard, output can be displayed on the user’s screen, written to a file, or
transmitted through a network. To unify the treatment of input and output, C++ relies on a
framework of classes to support an abstraction known as a “stream.” We insert data into an
output stream to send it elsewhere, or extract data from an input stream to read it. A stream that
provides us with input is represented using the istream class, and a stream that we use to send
output elsewhere is represented using the ostream class. Some streams can serve as both input
and output (iostream). In this section, we provide an overview of the most commonly used stream
classes. A summary of those is given in Figure 6.

6.1 Necessary Libraries

Technically, streams are not automatically available in C++. Rather, they are included from one
of the standard libraries. A C++ library serves a similar purpose to a Python module. We will

Class Purpose Library

istream Parent class for all input streams <iostream>

ostream Parent class for all output streams <iostream>

iostream Parent class for streams that can process input and output <iostream>

ifstream Input file stream <fstream>

ofstream Output file stream <fstream>

fstream Input/output file stream <fstream>

istringstream String stream for input <sstream>

ostringstream String stream for output <sstream>

stringstream String stream for input and output <sstream>

Figure 6: Various input and output stream classes.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 23

Python C++

1 print "Hello"

2 print # blank line
3 print "Hello,", first
4 print first, last # automatic space
5 print total
6 print str(total) + "." # no space
7 print "Wait...", # space; no newline
8 print "Done"

1 cout << "Hello" << endl;
2 cout << endl; // blank line
3 cout << "Hello, " << first << endl;
4 cout << first << " " << last << endl;
5 cout << total << endl;
6 cout << total << "." << endl;
7 cout << "Wait... "; // no newline
8 cout << "Done" << endl;

Figure 7: Demonstration of console output in Python and C++. We assume that variables first
and last have previously been defined as strings, and that total is an integer.

discuss them more fully in Section 12. In our initial example, we loaded the definitions as follows.

#include <iostream>

using namespace std;

The first of these statements imports the iostream library (short for “input/output stream”). The
second brings the definitions into our default namespace. In addition to the basic class definitions,
this library defines two special instances for handling input to and from the standard console. cout

(short for “console output”) is an ostream instance used to print messages to the user, and cin

(short for “console input”) is an istream instance that reads input from the keyboard.

6.2 Console Output

Output streams support the << operator to insert data into the stream, as in cout << "Hello".
The << symbol subliminally suggests the flow of data, as we send the characters of "Hello" into the
stream. As is the case with print in Python, C++ will attempt to create a text representation for any
nonstring data inserted into the output stream. Multiple items can be inserted into the stream by
repeated use of the operator, as in cout << "Hello "<< person << ". How are you?". Notice
that we explicitly insert spaces when desired, in contrast to use of Python’s print command. We
must also explicitly output a newline character when desired. Although we could directly embed
the escape character \n within a string, C++ offers the more portable definition of a special object
endl that produces a newline character when inserted into the stream. To demonstrate typical
usage patterns, Figure 7 provides several side-by-side examples in Python and C++.

6.3 Formatted Output

In Python, string formatting can be used to generate output in a convenient form, as in

print '%s: ranked %d of %d teams' % (team, rank, total)

The use of the % sign in this context is designed to mimic a long-standing routine named printf,
which is part of the C programming language. Since C++ is a direct descendant of C, that function
is available through a library, but it is not the recommended approach for C++ because it does
not inherently support non-primitive data types (e.g., the C++ string class). Instead, formatted

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 24

output can be generated through the output stream. Since data types are automatically converted
to strings, the above example can be written in C++ as

cout << team << ": ranked " << rank << " of " << total << " teams" << endl;

More effort is needed to control other aspects of the formatting, such as the precision for floating-
point values. As an example, assume that the variable pi holds the value 3.14159265. In Python,
the expression 'pi is %.3f'% pi produces the result 'pi is 3.142'. The closest equivalent to
the display of variable pi in C++ might be accomplished as

cout << "pi is " << fixed << setprecision(3) << pi << endl;

This command would result in the output pi is 3.142. The objects fixed and setprecision(3) are
known as manipulators and must be included from the <iomanip> library. When inserted into
the output stream with << they affect the format for subsequent values. In this particular case,
the fixed manipulator says to print floating-point numbers with trailing decimal digits even when
zero, and not to use scientific notation even for very large or very small values. The setprecision(3)
manipulator specifies the number of digits beyond the decimal point to be used in the fixed format.

The minimum width of displayed values and the justification within that width can be con-
trolled by additional manipulators. As an example, we might print an entry on a receipt as

cout << setw(10) << item << " " << setw(5) << quantity << endl;

This is equivalent to the Python command print '%10s %5d'% (item, quantity). If we execute this
command once with values pencil and 50, and then with values pen and 100, the output is aligned as:

pencil 50

pen 100

As is the case with Python, data in a fixed-width field will be right-justified by default. We can
switch to left-justification in C++ by inserting the manipulator left into the stream. For example,
if we repeat the previous exercise using the command

cout << left << setw(10) << item << " "<< right << setw(5) << quantity << endl;

we get a result of

pencil 50

pen 100

It is worth noting that the C++ manipulators are different than Python’s formatting tools,
in that most of the manipulators we have demonstrated change the state of the output stream
object. For example, once the fixed manipulator has been inserted into a stream, all subsequent
numbers for that stream will be displayed in that format (unless a conflicting manipulator such as
scientific is subsequently inserted). In our most recent example, notice that we explicitly inserted
the manipulator right before outputting quantity to re-establish right-justification; otherwise, the
formatting would still be affected by the earlier insertion of left. However, there are some exceptions
to this rule. The setw manipulator, demonstrated above, only affects the next piece of displayed
output. In our example, the insertion of setw(10) affected the display of the string item, yet it did
not dictate a minimum width for the subsequent string " ".

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 25

6.4 Console Input

In Python, input from the console is typically read using the raw input function, as in

person = raw input('What is your name?)

In C++, keyboard input is managed through an input stream named cin (just as console output
is managed by cout). The behavior of the Python example can be replicated with a C++ function
named getline. Its calling syntax appears as

string person;
cout << "What is your name? "; // prompts the user (without a newline)
getline(cin, person); // stores result directly in variable 'person'

Both Python’s raw input and C++’s getline read and remove all characters from the input stream
up to and including the next newline, yet with the newline itself omitted from the resulting string.

However, direct use of getline is atypical in C++. Instead of reading a line at a time, program-
mers can use the >> operator for extracting individual pieces of formatted data from an input
stream. As an example, consider the task of reading a single integer from the user. In Python, we
have to first get the raw string and separately compute the integer that those characters represent.
Consider, for example, number = int(raw input('Enter a number from 1 to 10: ')).

In C++, the corresponding code fragment might appear as follows.

int number;
cout << "Enter a number from 1 to 10: "; // prompt without newline
cin >> number; // read an integer from the user

The >> operator extracts data from the stream and stores it in the indicated variable. The static
typing of C++ is advantageous in this context. Because number was already designated as an
integer, the input characters are automatically converted to the corresponding integer value.

Much as the << operator can be chained in order to insert several pieces of data into an output
stream in a single command, it is possible to chain the >> operator can be chained to read in sev-
eral pieces of data. For example, here is a code fragment that asks the user to enter two numbers
and computes their sum.

int a, b;
cout << "Enter two integers: ";
cin >> a >> b;
cout << "Their sum is " << a + b << "." << endl;

The third line has the effect of inputting two separate integers, the first of which is stored in
variable a and the second in b. Formally, the >> operator works by skipping any whitespaces
(e.g., spaces or newlines) that reside at the front of the stream, and then interpreting the first
non-whitespace token as an integer. The second occurrence of the >> operator on that line causes
intermediate whitespace to be removed from the stream and the next token to be interpreted as an
integer. Any subsequent characters (including further whitespace) remain on the stream.

When using the stream operator, it does not matter whether the user enters the integers on
the same line or different lines, as intermediate newlines and spaces are treated similarly. It also
does not matter whether the programmer uses the chained syntax cin >> a >> b or two separate

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 26

commands cin >> a followed by cin >> b. Both forms are valid, regardless of the user’s spacing.
Note that this management of input streams is quite different from our usage of the raw input

command in Python, which reads a single line. If we expect the user to enter two integers on a
single line of input, in Python we have to read the line, then split it into two pieces based on white
space, and then attempt to convert each of those pieces to the corresponding integer. A Python
version of such a program is given as the solution to Practice 2.31 in the book.

To emphasize the different treatment of whitespace, we reconsider our initial example of query-
ing a person’s name. Our original C++ solution used the getline function, to more accurately
mirror Python’s style. As an alternative, we could write the C++ code as

string person;
cout << "What is your name? "; // prompt the user (without a newline)
cin >> person; // input the response

Yet this code does not strictly have the same behavior. To highlight the difference, consider the
following user session.

What is your name? Guido van Rossum

After executing the C++ code, the variable person will be assigned the string "Guido", while the
subsequent characters (" van Rossum\n") remain on the stream, as it extracted starting with the
first non-whitespace character and stopping prior to the next subsequent whitespace. If the use of
newlines is significant to the context, a programmer should use a function like getline. However,
careful consideration of the whitespace treatment is important when interspersing calls to getline
with use of the >> operator. A call to getline removes the ending newline from the stream, but
use of the extraction operator reads a token while leaving subsequent whitespace on the stream.
Consider the following code fragment.

int age;
string food;
cout << "How old are you? ";
cin >> age;
cout << "What would you like to eat? ";
getline(cin, food);

A typical user session might proceed as follows.

How old are you? 41

What would you like to eat? pepperoni pizza

The problem is that after executing the above code, the variable food will be set to the empty
string "". The first extraction properly read the age as 41, but the newline character that the user
entered after those characters remains on the stream. Even though the user had entered additional
input, the call to getline first encounters an apparent empty line because of the remaining newline
from the first response. This can be remedied by intentionally reading the blank line before reading
the food. A more robust approach relies on use of an ignore function supported by input streams.
Another approach for handling line-based input is to always rely on getline to read a single line into
a string, and then to use a class named stringstream that supports extracting formatted data from
a string; we will discuss the stringstream class in Section 6.6.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 27

1 number = 0;
2 while (number < 1 || number > 10) {
3 cout << "Enter a number from 1 to 10: ";
4 cin >> number;
5 if (cin.fail()) {
6 cout << "That is not a valid integer." << endl;
7 cin.clear(); // clear the failed state
8 cin.ignore(std::numeric limits<int>::max(), '\n'); // remove errant characters from line
9 } else if (cin.eof()) {

10 cout << "Reached the end of the input stream" << endl;
11 cout << "We will choose for you." << endl;
12 number = 7;
13 } else if (cin.bad()) {
14 cout << "The input stream had fatal failure" << endl;
15 cout << "We will choose for you." << endl;
16 number = 7;
17 } else if (number < 1 || number > 10) {
18 cout << "Your number must be from 1 to 10" << endl;
19 }
20 }

Figure 8: Robust error-checking with input streams.

Finally, we address the issue of what happens when something goes wrong while attempting to
read input. For example, the user might enter the characters hello when an integer was expected.
Other unexpected situations may cause failure of the input stream, such as it being closed when a
user types cntr-D into the console. In Python, such errors result in a formal exception being thrown.
For example, a ValueError is reported when trying to get an integer value from an improperly
formatted string, and an IOError is reported if the raw input call fails. In C++, an attempt at
extracting data from a stream does not throw an exception by default. Instead, the flow of control
continues, but with the value of the inputted variable left indeterminate. To support more robust
behaviors, the streams have methods that allow a programmer to check various aspects of their
state. For example, if a user types non-numeric characters when an integer is expected, the stream’s
“fail bit” is set to true internally and can be tested with a call to cin.fail(). That bit remains set
until explicitly cleared by the programmer. Other state bits can be queried to determine whether
the “end of file” has been reached on a stream, or if some other bad state has been reached.
Page 182 of our book gives a more robust Python fragment for reading a valid integer from 1 to
10. For comparison, Figure 8 of this document presents a similar code fragment in C++.

6.5 File Streams

C++ supports additional stream classes for managing input and output involving files. Specifically,
the <fstream> library defines the ifstream class for reading input from a file, the ofstream class for
writing output to a file, and an fstream class that is capable of simultaneously managing input and
output for a given file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

6. INPUT AND OUTPUT Page 28

We begin with an example using an ifstream instance. If the name of an existing file is known
in advance, an input stream can be declared as

ifstream mydata("scores.txt");

If the filename is not known in advance, the stream can be initially declared without a filename
and opened as a later operation. The open method accepts the filename as a parameter but, for
historical reasons, requires that the name be expressed as a C-style string. Here is an example usage:

ifstream mydata;
string filename;
cout << "What file? ";
cin >> filename;
mydata.open(filename.c str()); // parameter to open must be a C−style string

The same techniques can be used with an ofstream instance for writing to a file. By default,
opening an ofstream causes the target file to be overwritten by a new file, just as with Python’s
open('scores.txt', 'w'). If you want to append to the end of an existing file, as with Python’s
open('scores.txt', 'a'), the C++ command is

ofstream datastream("scores.txt", ios::app);

The more general fstream class can be used to simultaneously manage input and output from
the same file, although coordinating such manipulations takes more care.

6.6 String Streams

We have seen how cin and cout manage the console and how the file streams are used to manage
files. All of the stream operators offer convenient support for reading or writing formatted data.
As an example, if we have an integer age, the command cout << age converts the integer into the
corresponding characters used to display that number (e.g., "41"). But what if we want to compute
the string representation of an integer, not for immediate output, but perhaps to save in a string

variable? In Python, the syntax displayedAge = str(age) produces such a string.
We avoided this issue at the end of Section 4, because the conversion is not quite as direct in

C++. Instead, we can use the stringstream class, included from the <sstream> library. This class
allows us to use the stream operators to insert formatted data into a string or to extract formatted
data from that string. For example, here is code that produces a string based upon an integer value.

int age(41);
string displayedAge;
stringstream ss;
ss << age; // insert the integer representation into the stream
ss >> displayedAge; // extract the resulting string from the stream

String streams can also be used to convert in the other direction, starting with a string and parsing
it to extract pieces of data. For example, in Section 6.4 we discussed differences between tokenized
input in C++ versus Python’s style of using raw input to read a line and then subsequently splitting
the tokens on that line. In C++, we can emulate such a style by using getline to read a single line
as a string, and then using a stringstream to manage subsequent extractions of formatted data.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 29

7 Classes in C++

Classes provide the same abstraction for storing and manipulating information in C++ as they
do in Python. In Section 7.1 we discuss classes from the perspective of a user of a class, with
rather similar syntax between Python and C++, other than the need for a clear type declaration
in C++. In Section 7.2 we introduce the syntax for defining classes in C++. We discuss the
additional complexities that arise when defining a class in C++ due to the additional burden of
type declarations and other such specifications that assist in more rigorous compile-time checking.

7.1 Using Instances of a Class

Thus far, most of our examples have used primitive data types (e.g., int, double). However, string

is a class type, as are the various forms of streams from the previous section. In C++, when a
variable of a class type is declared, an instance of that class is automatically constructed. Two
examples of such a declaration are the following:

string s; // relies on default constructor without parameters
string greeting("Hello"); // explicit parameter sent to the constructor

In the first declaration, a new string instance is created using the default constructor of the class,
that is, a constructor that accepts zero parameters. In the case of strings, the default constructor
produces the empty string. The second syntax invokes a form of the string class constructor that
accepts a parameter to designate the initial contents of the new string.

As an aside, we wish to warn against a few potential mistakes in the declaration syntax. First,
when relying upon the default constructor, we did not use empty parentheses. Had we used paren-
theses, it would have looked like the following.

string s(); // WARNING!!!!! A function declaration

Although the intent may be to send zero parameters to the constructor, the C++ parser deems
this syntax as the signature for a function named s, taking zero parameters and returning a string

(that is, after all, how such a function’s signature would appear). As a second example, we wish to
emphasize that when parameters are specified in a declaration, they are included after the variable

name rather than after the class name. Compare the following illegal syntax with the original
correct syntax.

string("Hello") greeting; // parameters in wrong place

With that said, there is a scenario in which the parameters to a constructor appear after the
class name. This happens when a programmer wishes to construct an unnamed instance as part of
a larger expression, such as cout << string(20, '-'). We will see another such use in the coming
section involving the robust version of a Point class. A line of that code will appear as follows.

double mag = distance(Point()); // measure distance to the origin

The syntax Point() in this expression causes the construction of a new Point instance based on the
default constructor and in this context, the explicit parentheses are necessary.

Once an instance of a class has been constructed, C++ uses typical object-oriented syntax such
as greeting.replace(1, 4, "ey") to call the replace method on the string identified as greeting.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 30

7.2 Defining a Class

To demonstrate the syntax for defining a C++ class, we revisit several Python examples from
Chapter 6 of our book. We begin with the simple version of the Point class as given in Figure 6.3
on page 206. The corresponding C++ version of that class is given in Figure 9 of this document.
There are several important aspects to discuss in comparing C++’s syntax to Python’s.

Explicit declaration of data members

The issue of static typing arises prominently in a class definition as all data members must be
explicitly declared. Recall that in Python, attributes of a class were simply introduced by assign-
ment statements within the body of the constructor. In our C++ example, we explicitly declare
the two data members at lines 3 and 4.

Constructor

Line 7 of our code is the constructor, although the syntax requires some explanation. The line
begins with the name of the class itself (i.e., Point) followed by parentheses. The constructor is a
function, with this particular example accepting zero parameters. However, unlike other functions,
there is no designated return value in the signature (not even void).

1 class Point {
2 private:
3 double x; // explicit declaration of data members
4 double y;
5
6 public:
7 Point() : x(0), y(0) { } // constructor
8
9 double getX() const { // accessor

10 return x;
11 }
12
13 void setX(double val) { // mutator
14 x = val;
15 }
16
17 double getY() const { // accessor
18 return y;
19 }
20
21 void setY(double val) { // mutator
22 y = val;
23 }
24
25 }; // end of Point class (semicolon is required)

Figure 9: Implementation of a simple Point class.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 31

The next piece of syntax is the colon followed by x(0), y(0). This is what is known as an
initializer list in C++. It is the preferred way to establish initial values for the attributes (we
are not allowed to express initial values on lines 3 and 4). Finally, we see the syntax { }. This is
technically the body of the constructor. Some classes use the constructor body to perform more
intricate initializations. In this case, having already initialized the two variables, there is nothing
else for us to do. So the { } serves syntactically as a placeholder for the function body (somewhat
like pass in Python).

Implicit self-reference

A careful reader will have already noticed another major distinction between the class definition in
C++ and the same class in Python. The self reference does not appear as a formal parameter nor is
it used when accessing members of the instance. Remember that we have explicitly declared x and
y to be attributes of a point. Because of this, the compiler recognizes those identifiers when used

within the body of our methods (for example at line 10). For those who miss the self-reference, it
is implicitly available in C++ yet with the name this. It can be useful, for example, when passing
the object as a parameter to an outside function. Technically, this is a pointer variable (a concept
that will be introduced in Section 8.3).

Access control

Another distinction in C++ is the use of the terms public and private within the class definition.
These relate to the issue of encapsulation. With Python, we addressed this issue in Chapter 7.6 of
our book, differentiating at the time between what we considered “public” versus “private” aspects
of a class design. Public aspects are those that we expect other programmers to rely upon, while
private ones are considered to be internal implementation details that are subject to change. Yet
Python does not strictly enforce this designation. Instead, we rely upon a naming conventions,
using identifiers that start with an underscore (e.g., x) to infer privacy.

In C++, these designators serve to declare the desired access control for the various members
(both data members and functions). The use of the term private at line 2 affects the declarations
at lines 3 and 4, while the term public at line 6 effects the subsequent declarations. The compiler
enforces these designations within the rest of the project, ensuring that the private members are
not directly accessed by any code other than our class definition.

Designating accessors versus mutators

In our Python book, we used the notion of an accessor as a method that cannot alter the state of
an object, and a mutator as a method that might alter the state. This distinction is formalized
in C++ by explicitly placing the keyword const for accessors at the end of the function signature
but before the body. In our example, we see this term used in the signature of getX at line 9 and
again for getY at line 17. We intentionally omit such a declaration for the mutators setX and setY.

As with access control, these const declarations are subsequently enforced by the compiler. If
we declare a method as const yet then try to take an action that risks altering any of the attributes,
this causes a compile-time error. Furthermore, if a caller has an object that had been designated
as immutable, the only methods that can be invoked upon that object are ones that come with the
const guarantee.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 32

A robust Point class

To present some additional lessons about class definitions in C++, we provide a more robust
implementation of a Point class modeled upon the Python version from Figure 6.4 on page 213 of
our book. Our C++ version is shown in Figures 10 and 11 of this document.

Our first lesson involves the constructor. In Python, we declared a constructor with the signature
def init (self, initialX=0, initialY=0). This provided flexibility, allowing a caller to set initial
coordinates for the point if desired, but to use the origin as a default. The C++ version of this
constructor is given at line 7.

In our first version of the class, we emphasized that data members of the class can be accessed
without explicitly using a self-reference, for example using a syntax like x rather than Python’s
self. x. The same convention is used when the body of one member function invokes another.
For example, our implementation of the normalize method relies on a call to the distance method
at line 26 and the scale method at line 28. Those calls are implicitly invoked on the same Point
instance upon which normalize has been invoked. In contrast, the use of the constructor Point() at
line 26 instantiates a new (default) point as a parameter to the distance function.

Lines 31–33 are used to support the syntax p + q for the addition of two points. This behavior is
akin to the add method in Python, yet in C++ the semantics are defined using operator+ as the
“name” of the method. In this context, the left-hand operand p serves as the implicit instance upon
which the operator+ method is invoked, while q appears as an explicit parameter in the signature.
The const declaration that we make at line 31 designates that the state of p is unaffected by the
behavior (q is unaffected as well, but we delay discussion of that issue until Section 8.2).

Lines 35–41 support two different notions of multiplication: multiplying a given point by a
numeric constant, and computing the dot product of two points. Our original Python implemen-
tation accomplished this with a single function definition that accepted one parameter. Internally
it performed dynamic type-checking of that parameter and determined the appropriate behavior
depending on whether the second operand was a point or a number. In C++, we provide two
different implementations. The first accepts a double and returns a new Point; the second accepts
a Point and (coincidentally) returns a double. Providing two separate declarations of a method is
termed overloading the signature. Since all data is explicitly typed, C++ can determine which
of the two forms to invoke at compile-time, based on the actual parameters.

Line 42 ends our formal Point class declaration. However, we provide two supporting definitions
following that line. The first of those is used to support a syntax such as 3.25 * p. The earlier
definition of operator* from lines 35–37 supports the * operator when a Point instance is the left-

hand operand (e.g., p * 3.25). C++ does not allow the class definition of the right-hand operand
to directly impact the behavior. Yet if the left-hand operand’s type does not provide an adequate
definition (as with type double in the expression 3.25 * p), C++ looks for a free-standing operator*

function with a matching signature. So at lines 44–46, we provide a definition for how * should
behave when the first operand is a double and the second is a Point. Notice that both operands
appear as formal parameters in this signature since we are no longer within the context of a class
definition. The body of our method uses the same simple trick as in our Python implementation,
commuting the order so that the point becomes the left-hand operand (thereby, invoking our
previously defined version). As an aside, notice that we did not have to have such an additional
definition for operator+ since both operands (and thus the left-hand one) are Point instances for
addition.

Finally, lines 48–51 are used to produce a text representation of a point when inserted into an
output stream. A typical syntax for such a behavior is cout << p. Again, we define this behavior
outside of the context of the Point class because the left-hand operand is the output stream, and

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 33

1 class Point {
2 private:
3 double x;
4 double y;
5
6 public:
7 Point(double initialX=0.0, double initialY=0.0) : x(initialX), y(initialY) { }
8
9 double getX() const { return x; } // same as simple Point class

10 void setX(double val) { x = val; } // same as simple Point class
11 double getY() const { return y; } // same as simple Point class
12 void setY(double val) { y = val; } // same as simple Point class
13
14 void scale(double factor) {
15 x *= factor;
16 y *= factor;
17 }
18
19 double distance(Point other) const {
20 double dx = x − other. x;
21 double dy = y − other. y;
22 return sqrt(dx * dx + dy * dy); // sqrt imported from cmath library
23 }
24
25 void normalize() {
26 double mag = distance(Point()); // measure distance to the origin
27 if (mag > 0)
28 scale(1/mag);
29 }
30
31 Point operator+(Point other) const {
32 return Point(x + other. x, y + other. y);
33 }
34
35 Point operator*(double factor) const {
36 return Point(x * factor, y * factor);
37 }
38
39 double operator*(Point other) const {
40 return x * other. x + y * other. y;
41 }
42 }; // end of Point class (semicolon is required)

Figure 10: Implementation of a robust Point class.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 34

43 // Free-standing operator definitions, outside the formal Point class definition
44 Point operator*(double factor, Point p) {
45 return p * factor; // invoke existing form with Point as left operand
46 }
47
48 ostream& operator<<(ostream& out, Point p) {
49 out << "<" << p.getX() << "," << p.getY() << ">"; // display using form <x,y>
50 return out;
51 }

Figure 11: Supplemental operator definitions involving Point instances.

because we are not the authors of the ostream class. In our implementation, line 49 inserts our
desired output representation into the given output stream. We use the formal parameter out
rather than cout so that a user can apply this behavior to any output stream instance. The
declared return type on line 48 and the return statement at line 50 are technically required to
allow for multiple << operations to be chained in a single expression. For example, the syntax
cout << p << " is good" is evaluated as (cout << p) << " is good", with the result of the
first evaluation being an output stream used in the second operation. The use of the & symbol
twice on line 48 (for both the return type and the first parameter type) is a technicality that we
will address in Section 8.2.

7.3 Inheritance

In Chapter 9 of our book, we provided several examples of the use of inheritance in Python. We
will show two of those examples, translated to C++. First we define a DeluxeTV class modeled
closely after the version in Figure 9.2 of the book which used a SortedSet. Although we omit the
presumed definition for a basic Television class, our complete code for the DeluxeTV class is given
in Figure 12. The use of inheritance is originally indicated at line 1 by following the declaration
of the new class with a colon and then the expression public Television. With that designation1,
our DeluxeTV class immediate inherits all attributes (e.g., powerOn, channel) and all methods (e.g.,
setChannel) from the parent. What remains is for us to define additional attributes or to provide
new or updated implementations for methods that we want supported.

At line 3, we declare a new attribute to manage the set2 of favorite channel numbers. We wish
to draw particular attention to the use of the word protected at line 2. Until now, we have used
two forms of access control: public and private. Members that are public can be accessed by code
outside of the class definition, while members that are private can only be accessed from within the
original class definition. The purpose of privacy is to encapsulate internal implementation details
that should not be relied upon by others. Yet with the use of inheritance, there is need for a third
level of access. When one class inherits from another, the question arises as to whether code for
the child class should have access to members inherited from the parent. This is determined by the
access control designated by the parent. A child class cannot directly access any members declared
as private by the parent. However, the child is granted access to members designated as protected

by the parent.

1For the sake of simplicity, we will not discuss the precise significance of the term public on line 1.
2We will discuss the set class and other containers in Section 10.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 35

1 class DeluxeTV : public Television {
2 protected:
3 set<int> favorites;
4
5 public:
6 DeluxeTV() :
7 Television(), // parent constructor
8 favorites() // empty set by default
9 { }

10
11 void addToFavorites() { if (powerOn) favorites.insert(channel); }
12
13 void removeFromFavorites() { if (powerOn) favorites.erase(channel); }
14
15 int jumpToFavorite() {
16 if (powerOn && favorites.size() > 0) {
17 set<int>::iterator result = favorites.upper bound(channel);
18 if (result == favorites.end())
19 result = favorites.begin(); // wrap around to smallest channel
20 setChannel(*result);
21 }
22 return channel;
23 }
24 }; // end of DeluxeTV

Figure 12: Implementing a DeluxeTV class through inheritance.

In this particular setting, the important point is not actually our use of protected at line 2.
What matters to us is how the original attributes of the Television class were defined. For our
DeluxeTV code to work, it must be that television attributes were originally declared as

protected:
bool powerOn;
int channel;
...

If those had been declared as private, we would not have the necessary access to implement our
DeluxeTV. The original designer of the television may not have known that we would come along
and want to inherit from it, but an experienced C++ programmer will consider this possibility when
designing a class. In our DeluxeTV definition, the declaration of attribute favorites as protected

is not for our own benefit, but to leave open the possibility that someone else may one day want
to design a SuperDeluxeTV that improves upon our model. As an alternative to protected data, a
parent can provide protected member functions to encapsulate the private state.

The second aspect of our example we wish to discuss is the definition of our constructor, at
lines 6–9. In our Python version, the new constructor begins with an explicit call to the parent
constructor, using the syntax, Television. init (self). That was used to establish the default settings
for all of the inherited attributes. In C++, we can invoke the parent constructor as part of the

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

7. CLASSES IN C++ Page 36

initializer list using the syntax Television() at line 7. This calls the parent constructor without
sending any explicit parameters. To be honest, in this particular example, line 7 is superfluous. If
we do not explicitly call the parent constructor, C++ will do so implicitly. However, an explicit call
is necessary when parameters are to be sent to the parent constructor (as in our second example).
In this example, our default initialization of favorites at line 8 is also superfluous.

Lines 11–23 of our DeluxeTV code provides three new behaviors. The precise details of those
methods depend on knowledge of the set class; as such, we will revisit some of this code in Section 10.
Our purpose for the moment is to demonstrate the use of inheritance. We draw attention to the
fact that we are able to access the inherited attributes, powerOn and channel, as well as our new
attribute favorites when implementing the methods. We also call the inherited method setChannel.

A Square class

As a second example of inheritance, Figure 13 provides a C++ rendition of our original Square class
from Chapter 9.4.2 of our book. The Square inherits from a presumed Rectangle class. We do not
introduce any new attributes for this class, so our only responsibility for the constructor is to ensure
that the inherited attributes are properly initialized. To this end, we invoke the parent constructor
at line 4. In this case, we need the explicit call in order to pass the appropriate dimensions and
center. Had we not done so, an implicit call would have been made to the default version of the
rectangle constructor, leading to incorrect semantics for our square.

The remainder of the definition is meant to provide new getSize and setSize methods, while
also overriding the existing setHeight and setWidth methods so that a change to either dimension
affects both. We use the same approach as our Python version. We override the existing methods
at lines 7 and 8, changing their behaviors to call our new setSize method. Our setSize method
then relies upon the parent versions of the overridden setWidth and setHeight methods to enact the
individual changes to those values. The expression Rectangle:: before the method names at lines 11
and 12 is a scope resolution, indicating our desire to invoke the definitions of those behaviors
from the parent Rectangle class, rather than the corresponding methods of the Square class.

1 class Square : public Rectangle {
2 public:
3 Square(double size=10, Point center=Point()) :
4 Rectangle(size, size, center) // parent constructor
5 { }
6
7 void setHeight(double h) { setSize(h); }
8 void setWidth(double w) { setSize(w); }
9

10 void setSize(double size) {
11 Rectangle::setWidth(size); // make sure to invoke PARENT version
12 Rectangle::setHeight(size); // make sure to invoke PARENT version
13 }
14
15 double getSize() const { return getWidth(); }
16 }; // end of Square

Figure 13: Implementing a Square class based upon a Rectangle.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 37

Point

bldg pt

x = −90.233
y = 38.636

Figure 14: An example of parameter passing in Python.

8 Object Models and Memory Management

Python supports a consistent model in which all identifiers are inherently references to underlying
objects. Use of the assignment operator as in a = b causes identifier a to be reassigned to the same
underlying object referenced by identifier b. These semantics are consistently applied to all types of
objects. The assignment semantics also apply to the passing of information to and from a function,
as described in Chapter 10.3.1 of our book. Upon invocation, the formal parameters are assigned
respectively to the actual parameters indicated by a caller. The return value is communicated in
a similar fashion. As a simple example, assume that we define the following Python function for
determining whether a given point is equivalent to the origin:

def isOrigin(pt):
return pt.getX() == 0 and pt.getY() == 0

Now assume that the caller invokes this function as isOrigin(bldg), where bldg is an identifier that
references a Point instance. Figure 14 diagrams the underlying configuration. This scenario is
the precise result of the system performing an implicit assignment pt = bldg, setting the formal
parameter to the actual parameter.

C++ provides more fine-tuned control than Python, allowing the programmer a choice between
three different semantic models for storing and passing information. In this section, we examine
the correspondence between identifiers and underlying values in C++.

8.1 Value Variables

The most commonly used model in C++ is that of a value variable. Declarations such as

Point a;
Point b(5,7);

cause the system to reserve memory for storing newly constructed points. Because all data members
for a Point are explicitly declared in the class definition, the system can determine precisely how
much memory is required for each instance. The translation from a name to a particular instance
is handled at compile-time, providing greater run-time efficiency than Python’s run-time mapping.

To portray the semantics of a value variable, we prefer a diagram in the style of Figure 15,
without any independent concept of a reference. The assignment semantics for a value variable
is very different from Python’s. The command a = b assigns Point a the value currently held by
Point b, as diagrammed in Figure 16. Notice that names a and b still represent two distinct points.

The semantics of value variables is manifested as well in the passing of information to and from
a function. Consider the following C++ analog to our earlier Python example.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 38

x = 5.0
y = 7.0

a : Point

x = 0.0
y = 0.0

b : Point

Figure 15: The declaration of two separate value variables.

x = 5.0
y = 7.0

a : Point

x = 5.0
y = 7.0

b : Point

Figure 16: The effect of an assignment a = b upon value variables.

bool isOrigin(Point pt) {
return pt.getX() == 0 && pt.getY() == 0;

}

When a caller invokes the function as isOrigin(bldg), the formal parameter Point pt is implicitly
initialized as if using the copy constructor syntax,

Point pt(bldg);

Note that the formal parameter pt does not become an alias for the actual parameter. It is a newly
allocated Point instance with state initialized to match that of the actual parameter bldg. Figure 17
portrays this scenario. As a result, changes made to the parameter from within the function body
have no lasting effect on the caller’s object. This style of parameter passing is generally termed
pass-by-value, as originally discussed on page 351 of our book.

y = 38.636

bldg : Point pt : Point

x = −90.233
y = 38.636

x = −90.233

Figure 17: An example of passing by value in C++.

8.2 Reference Variables

A second model for a C++ variable is commonly termed a reference variable. It is declared as

Point& c(a); // reference variable

Syntactically, the distinguishing feature is the use of the ampersand. This designates c as a new
name, but it is not a new point. Instead, it becomes an alias for the existing point, a. We choose
to diagram such a situation as in Figure 18.

This is closer to the spirit of Python’s model, but still not quite the same. A C++ reference
variable must be bound to an existing instance upon declaration. It cannot be a reference to nothing
(as is possible in Python with the None value). Furthermore, the reference variable’s binding is
static in C++; once declared, that name can no longer be re-associated with some other object.
The name c becomes a true alias for the name a. The assignment c = b does not rebind the name c;
this changes the value of c (also known as a).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 39

y = 7.0

a : Point

x = 0.0
y = 0.0

c
b : Point

x = 5.0

Figure 18: The name c is an example of a reference variable in C++.

Reference variables are rarely used as demonstrated above, because there is little need in a
local context for a second name for the same object. Yet the reference variable semantics becomes
extremely important in the context of functions. We can use a pass-by-reference semantics by
using the ampersand in the declaration of a formal parameter, as in the following revision of isOrigin.

bool isOrigin(Point& pt) {
return pt.getX() == 0 && pt.getY() == 0;

}

This leads to a model similar to Python in that the formal parameter becomes an alias for the
actual parameter. There are several potential advantages of this style. For larger objects, passing
the memory address needed to establish an alias is more efficient than creating and passing a copy
of the object’s value. Passing by reference also allows a function to intentionally manipulate the
caller’s object (in contrast to when a parameter is passed by value). If we do not want to allow
a function to mutate its parameter, yet we want the efficiency of passing it by reference, a const

modifier can be declared with the formal parameter, as in

bool isOrigin(const Point& pt) {
return pt.getX() == 0 && pt.getY() == 0;

}

With such a signature, the point will be passed by reference but the function promises that it will
in no way modify that point (a promise that is enforced by the compiler).

Given this discussion of reference variables, we revisit our earlier definition of the robust Point
class from Section 7.2. Notice that our original signature for the distance method on line 19 of
Figure 10 appeared as

double distance(Point other) const {

The point serving as the parameter is being passed “by value,” causing a local copy to be made.
As a value parameter, we do not bother to make a const declaration because it does not matter
whether the function body modifies the local value (although it does not). Since a point has several
fields, it may be more efficient to pass it by reference. In that case, we will clearly designate it as
a constant reference with the following revised signature.

double distance(const Point& other) const {

The const for the parameter declaration assures the caller that the the function will not modify its
value, while the const declaration that follows the signature designates the method as an accessor,
meaning that the point upon which it is invoked is unchanged.

We might similarly revise the operator+ method to receive its parameter as a constant reference.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 40

Point operator+(const Point& other) const {
return Point(x + other. x, y + other. y);

}

Note that the return type remains declared as a value rather than a reference. This is because our
local return value is a transient object that will soon be destroyed. It would be unsafe to return a
reference to such an object to the caller, so we must send its value.

As a final example, our original version of the operator<< method from Figure 11 appeared as

ostream& operator<<(ostream& out, Point p) {
out << "<" << p.getX() << "," << p.getY() << ">"; // display using form <x,y>
return out;

}

While we could revise this definition to send the Point as a constant reference, we wish to draw
attention to the treatment of the ostream as both a parameter and return value. Notice that the out
parameter is designated as a reference. This is because we wish to insert data into the actual stream
indicated by the caller, not a “copy” of the stream (in fact, streams cannot legally be copied). Note
as well that this parameter is not designated as a const reference, because our insertion of data
impacts the state of that stream.

Because streams cannot be copied, we must return it as a reference using ostream& as the
declared return type. In our earlier discussion of operator+ we emphasized that it was not safe to
return its resulting point as a reference. The problem there was that the result had been created
in the local scope of the function. In the case of operator<<, the stream that we are returning
originated with the caller. Therefore, we may safely return a reference to it knowing that it will
continue to exist after our function completes.

8.3 Pointer Variables

C++ supports a third model for variables known as a pointer. This has semantics closest to
Python’s model, but the syntax is quite different. A C++ pointer variable is declared as follows:

Point *d; // d is a pointer variable

The asterisk in this context declares that d is not a Point itself, but a variable that can store the
memory address of a Point. Pointers are more general than reference variables in that a pointer is
allowed to point to nothing (using the keyword NULL in C++) and a pointer can be dynamically
reassigned to the address of another instance. A typical assignment statement is as follows:

d = &b;

This leads to a configuration diagrammed in Figure 19. We intentionally portray d as a separate
entity because it is itself a variable stored in memory and manipulated, whose value just happens to
be a memory address of some other object. In order to manipulate the underlying Point with this
variable, we must explicitly dereference it. While the syntax d represents a pointer, the syntax *d
represents the thing it addresses (as a mnemonic, consider the original declaration Point *d which
suggests that *d is a Point). For example, we could call the method (*d).getY(), which returns
the value 7.0 in this case. The parentheses are necessary due to operator precedence. Because this
syntax is bulky, a more convenient operator −> is supported, with equivalent syntax d−>getY().

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 41

a : Point

x = 0.0
y = 0.0

c

0xbffff1234

b : Point

x = 5.0
y = 7.0

d : Point*

Figure 19: Variable d is an example of a pointer whose value is the address of instance b.

Pointers provide several additional opportunities for a C++ programmer. A pointer can be
sent as parameter to a function, as demonstrated in the following revision of isOrigin.

bool isOrigin(Point *pt) {
return pt−>getX() == 0 && pt−>getY() == 0;

}

Technically, what happens is that we declare a new local pointer, with the value of that pointer
set to the value of the pointer sent by the caller. As a result, the function body has indirect access
to the same underlying object that the pointer addresses. This provides similar opportunity to
when parameters are passed by value, but it allows the additional possibility of the caller sending
a null pointer (recall that reference variables must be bound to something). The following section
introduces another use of pointers in C++, that of managing dynamically-allocated objects.

8.4 Dynamic Memory Management

With value variables, C++ handles all issues of memory management. When a declaration is made,
such as Point a, the system reserves memory for storing the state of the object. Furthermore, when
that variable declaration goes out of scope (for example, if a local variable within a function
body), the system automatically destroys the object and reclaims the memory for other purposes.
Generally, this automatic memory management eases the burden upon the computer.

However, there are circumstances when a programmer wants to take a more active role in con-
trolling the underlying memory management. For example, we might want a function that creates
one or more objects that are to remain in memory beyond the context of the function. In C++,
such a dynamic instantiation is indicated using the keyword new in a context such as new Point()
for a default construction, or new Point(5,7) for a non-default construction. Formally, the new

operator returns the memory address at which the constructed object is stored. To be able to
further interact with the object, we must be able to locate it. A common approach is to use a
pointer variable to remember the location.

Point *p; // declare pointer variable (not yet initialized)
p = new Point(); // dynamically allocate a new Point instance, storing its address

With this code fragment, two different pieces of memory are being used. A certain number of bits
are set aside for managing the pointer variable p, while another set of bits are set aside for storing
the state of the underlying Point instance. The key is that with the dynamic allocation of the
point, that instance will remain in memory even when the variable p goes out of scope (causing the
reclamation of the variable p but not the object to which it points).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 42

Management of dynamically-allocated objects requires more care. If a program were to lose
track of the memory location of the object (such as by reassigning a pointer variable to a different
location), the original object would remain in memory yet be inaccessible3. Such a mistake is known
as a memory leak and a program that continues to allocate such objects while never deallocating
them consumes more and more of the computer’s memory as it runs. In C++, the programmer
has the burden of explicitly destroying a dynamically-allocated object when it is no longer needed.
This is done by using a syntax such as delete p in the above example. The expression after the
keyword delete specifies the address of the object to be deleted. However, delete must only be
used on objects that were dynamically-allocated. If you were to specify the address of a standard
value variable an error occurs when the system subsequently attempts the automatic deallocation.

8.5 Treatment of Arrays

As a holdover from C, arrays are treated rather unusually, especially when compared to the more
object-oriented container classes that we will discuss in Section 10. In Sections 4.2 and 4.4 we had
introduced the basic declaration and use of arrays in C++. We considered the following example.

double measurements[300];

This declaration causes the system to create an array of 300 double values. A particular entry of
that array can be accessed with an expression such as measurements[7]. In this section, we wish to
discuss the treatment of the array as a whole.

The expression measurements, without any explicit indexing, is a legal syntax in C++. Intu-
itively, that expression relates to the array as a whole, but the semantics is not the same as with
a primitive type. The expression measurements represents the memory address of the beginning of

the array. In fact, the formal data type for this expression is a double* (i.e., a pointer to a double).
The significance of this semantics can be demonstrated with an example. Assume that our

previous declared measurements has been populated with data. We might wish to create a second
array and to copy the original data to the secondary array. The following is an errant attempt.

double backup[300];
backup = measurements; // does not actually copy the underlying array

The first line is a legitimate declaration of a second array, able to store 300 double values. The
problem is that the assignment backup = measurements changes the pointer backup to have a value
equal to the address currently known as measurements. In affect, we have made the variable backup
an alias for the original array (while leaving the newly allocated array inaccessible).

There is no direct way to make a copy of an entire array. Instead, we could write our own loop
to initialize the second array with the same values stored in the original.

double backup[300];
for (int i=0; i < 300; i++)

backup[i] = measurements[i];

The array variable can be used directly as a pointer. Since measurements is a pointer to
the first array location, the expression *measurements represents the double stored at that loca-

3In contrast, Python detects inaccessible objects and reclaims them, as discussed in Chapter 10.1.3 of the book.
However, Python must perform additional bookkeeping for all objects to perform that task, thus trading efficiency
for convenience.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 43

tion (i.e., measurements[0]). C++ pointers support a notion of arithmetic in that the expres-
sion measurements + 7 represents the address that is seven entries beyond the start of the array.
Thus *(measurements + 7) is equivalent in meaning to measurements[7].

We should also note that C++ does not make any effort to ensure that our index is legitimate.
For example, given our earlier declaration, use of the expression measurements[350] is legal, but the
affect is likely disastrous. Given knowledge of the starting address for the array, this expression
refers to the “double” that is located 350 entries away from the start of the array. However, since
our array was declared with only 300 entries, the memory location that is 350 steps away from the
beginning is not part of the array. It could vary well be bits that are being used to represent some
other object. In comparing this treatment to that of Python’s list, we note the trade-off between
efficiency and convenience. If we were to attempt to access measurements[350] in Python for a list
that did not actually have that many entries, an IndexError is thrown. Python checks the validity
of the index at run-time, yet this check requires a few extra steps internally. C++ opts for greater
efficiency by blindly going to the indicated memory location, assuming that the programmer has
designated a valid index.

The treatment of arrays in C++ also impacts the way in which we send an array as a parameter
to a function. For example, we might wish to support a function sum that would support a natural
syntax such as total = sum(measurements). Unfortunately, such a calling signature is nontrivial.
The challenge relates to the fact that arrays cannot be directly copied en masse. When sending
measurements as a parameter, what is really being sent is the pointer value. Yet within the context
of the function, we need to know not only where the array begins in memory, but also how many
entries there are. So a common approach to implementing such a function involves two separate
parameters, as demonstrated in the following example.

double sum(double data[], int n) {
double temp = 0.0;
for (int i=0; i < n; i++)

temp += data[i];
return temp;

}

The first parameter designates that data is in effect an array of doubles, although all that is sent is
a pointer to the beginning of the array. The second parameter is used to denote the array’s length.
The caller must use a syntax such as total = sum(measurements, 300) when invoking our function.
Inside the body of the function, we index the array using a standard syntax such as data[i]. Because
the first parameter is really just a pointer, some authors will use the equivalent signature

double sum(double *data, int n) {

Although it is not syntactically clear that data points to an array of doubles rather than a single
double, documentation for such a function would designate the proper usage.

We also note that either forms of our sum function can be used to compute the sum of a desired
subarray, simply by designating the “start” of the subarray as the first parameter and the length
of the subarray as the second. For example, the call sum(&measurements[50], 10) will compute the
equivalent of Python’s sum(measurements[50:60]). It involves the subarray starting at the address

of measurements[50], containing ten entries. Fans of pointer arithmetic could make the same call
using the syntax sum(measurements + 50, 10).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 44

Finally, we wish to note that arrays can be dynamically-allocated rather than relying on auto-
matic memory management. This is particular useful when we need to create an array, but we do
not know the proper size of the array until run-time. In that case we can begin by declaring our
“array” as a pointer to the base type, such as

double *measurements;

When we wish to dynamically allocate an array of a particular size, we can do so using a syntax,

measurements = new double[numEntries]; // assuming numEntires is well−defined

This dynamically allocates an array of double values, returning the address of the first entry.
As was the case in Section 8.4, a programmer who dynamically allocates an array is ultimately
responsible for releasing the memory when it is no longer needed. However, to deallocate an array,
a programmer must use the delete[] operator rather than delete. Thus if measurements were
dynamically allocated as above, it can be destroyed with the command delete[] measurements.

8.6 Constructors, Destructors, and the Assignment Operator

Constructors in C++ serve a similar purpose as they do in Python. They are primarily responsible
for initializing the state of a newly created object. For example, the simple Point class of Figure 9
supports a constructor that initializes both data members to the value 0.0. Such a zero-parameter
form is known as a default constructor and is invoked with a user syntax such as

Point a;

The constructor for the more robust Point class of Figure 10 supports additional calling signatures
for the user’s convenience. It could be invoked for example as

Point b(5,7);

The Point class also supports another constructor form known as a copy constructor, even
though we did not provide any explicit code as such. This allows a new instance to be initialized
based upon the value of an existing instance. For example, given our earlier definition of point b,
we could instantiate a new point as follows.

Point c(b); // Existing point b is the parameter

This creates and initializes a new instance c, which is given an initial value patterned upon
instance b. But it is important to understand that the new instance is independent, in the sense
that it has its own memory and that subsequent changes to one of these points will not affect the
other. The first is simply used as a model for the second, as the new point’s x value is set to the
same as the original’s x, and the new y is initialized to the value of the original y. If we were to
describe the behavior of the copy constructor it would be coded as follows.

Point(const Point& other) : x(other. x), y(other. y) { } // copy constructor

Yet we did not explicitly need such a definition in our Point class. C++ provides an implicit
copy constructor for every class that does not explicitly define one. By default, it performs a
member-by-member copy. The primary reason for a default copy constructor is that the system

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 45

needs to do its own copying when passing value parameters. Recall that when a parameter is passed
by value, the formal parameter is a local instance that is initialized to match the caller’s actual
parameter. The copy constructor is the mechanism used to create that local instance.

However, some classes need a more specialized behavior to provide correct copying semantics.
In particular, there is a potential ambiguity for a class that contains a pointer as a data member.
That pointer might be addressing some memory that was allocated specifically for the state of the
given instance, or it might be pointing to memory that inherently “belongs” to some other object.
In the former case, the correct semantics is to do a deep copy of the object being referenced. In the
latter case, the correct semantics is likely to replicate the pointer but not to replicate the underlying
object. The member-by-member copying mechanism of the default copy constructor in effect is a
shallow copy, creating a pointer whose value is the same address as the pointer that is being
copied4. Yet C++ allows the designer of a class to override the semantics of the copy constructor.

As a motivating example, we develop a simple version of a TallySheet class for integer values,
akin to that used in Chapter 8.5.3 of our book for computing frequency counts. We wish to have an
array of counters for the various numbers that are added to the data set, yet we do not know how
big of an array to declare until we are told the range of values that may occur. For that reason, we
must begin by declaring an int* data member, and then later set that pointer to the address of a
properly allocated array of integers. The beginning of our class appears as follows.

1 class TallySheet {
2 private:
3 int minV;
4 int maxV;
5 int size;
6 int* tallies;
7
8 public:
9 TallySheet(int minVal, int maxVal) :

10 minV(minVal), maxV(maxVal), size(maxVal−minVal+1), tallies(new int[size]) {
11 for (int i=0; i < size; i++)
12 tallies[i] = 0;
13 }

The pointer tallies is declared at line 6. It is not until the primary constructor is called before
we can compute the required size of the array and then dynamically allocate it (line 10). The
complication arises if someone were to make a copy of a tally sheet. For example, we might imagine
a user who wants to make a copy of a partial tally, and then do further simulation on the copy
while ensuring that the original version of the counts remains unchanged.

It would be a mistake for us to rely on the system-provided copy constructor. Because the tallies
member is a pointer, the default copy would result in a new tally sheet with its tallies pointer set to
the same address as the original tallies value. In effect, the two TallySheet instances would be shar-
ing the same underlying array, thereby interfering with an accurate count. The proper semantics
for copying a tally sheet is to create a deep copy, giving the new instance its own array of counts,
albeit initialized based upon the existing counts at that time. We provide a specialized version of
the copy constructor by defining an additional constructor that accepts another TallySheet instance
as a parameter. For our class, we implement the proper copying semantics as follows.

4We strongly recommend that you revisit Chapter 10.2 of our book for a discussion of these issues in Python.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 46

14 TallySheet(const TallySheet& other) :
15 minV(other. minV), maxV(other. maxV), size(other. size), tallies(new int[size]) {
16 for (int i=0; i < size; i++)
17 tallies[i] = other. tallies[i];
18 }

The new sheet gets the same minimum, maximum, and size. But rather than aliasing the existing
array, we make sure to initialize the tallies pointer to a newly allocated array at line 15. In lines 16
and 17, we use a loop to copy the original array entries into the new array.

Destructors

Just as the constructors of a class are used for initializing the state of a newly created object,
there is a method known as a destructor that is invoked each time an object reaches the end of
its lifespan (e.g., a value variable that goes out of scope, or a dynamically-allocated object that is
explicitly deleted). As is the case with the copy constructor, C++ will provide an implicit definition
for a destructor if the programmer does not. The default behavior invokes the destructor upon
each of the data members.

For many classes, such as our Point class, this implicit behavior suffices. However, ambiguity
exists when pointers are used as data members. When an instance is being destroyed, should an
object that it references be destroyed as well? With the default destructor, the memory for the
pointer itself is reclaimed, but the object to which it points is not. For dynamically-allocated
data such as the TallySheet’s underlying array, we want to deallocate its memory as well. We
can override the default behavior by providing an explicit destructor in the class definition. By
convention, the destructor is a method whose name is the class’s name preceded by a ˜, taking
no parameters, and providing no return value (not even void). Our TallySheet destructor appears as,

19 ˜TallySheet() {
20 delete[] tallies; // deallocate the dynamically−allocated array
21 }

had we not explicitly deleted the dynamically-allocated array, it would remain stranded in mem-
ory indefinitely. This is in contrast to an array declared as a standard value variable, which is
automatically reclaimed upon destruction of an instance.

The Assignment Operator

The assignment operator = is used to assign the left-hand operand the value of the right hand
operator. For example, with integers variables we write x = y to set the value of variable x equal
to the value of variable y. In Section 8.1 we emphasized that for the Point class, the command
a = b assigns Point a the value currently held by b. That is a. x is assigned the value b. x, and
a. y is assigned the value b. y. Technically, the = symbol is an operator and controlled by a
method named operator=, just as the semantics of + is controlled by operator+. Yet C++ will
automatically provide a default semantics if we do not implement operator=. The default is a
member-by-member assignment, setting each data member of the left-hand operand to the value
of the respective member of the right-hand operand. For our Point class, that is exactly the behav-
ior we want, so we did not include an explicit implementation. If we had, it would appear as follows.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

8. OBJECT MODELS AND MEMORY MANAGEMENT Page 47

Point& operator=(const Point& other) {
x = other. x;
y = other. y;
return *this;

}

The assignment of the members x and y is straightforward. The noteworthy aspect is the treatment
of the return value. At first thought, it might seem that an expression a = b is an action, but should
not have a resulting value. Yet it is supposed to have the new value as its result so that assignments
can be chained as a = b = c. This treatment is similar to that of the chaining of stream operators,
as originally demonstrated in Figure 11 on page 34. So we return the Point itself (as a reference,
to avoid unnecessary copying). Internally, we use the keyword this to identify the Point instance
being operated upon. C++’s treatment of this is akin to Python’s self identifier. From a technical
perspective, this is a pointer type in C++. Because we want to return the Point rather than a
pointer to a Point, we dereference *this in the return statement.

While we did not have to explicitly provide the assignment operator for our Point class, greater
care is necessary for classes such as TallySheet that make use of dynamically-allocated memory. The
tallies pointer on the left-hand side would become an alias for the array on the right-hand side, and

the original left-hand array would be lost (i.e., a memory leak). Instead, we must ensure that the
instances maintain their own arrays. Since, the existing array for the left-hand instance may not
be the correct size for the renovated state, we deallocate the old array, and then reallocate a new
array of the correct size. Then we copy the contents. The assignment operator for our TallySheet
class appears as follows.

TallySheet& operator=(const TallySheet& other) {
if (this != &other) { // ignore self−assignments

minV = other. minV;
maxV = other. maxV;
size = other. size;
delete[] tallies; // throw away old array
tallies = new int[size]; // create new array with updated size
for (int i=0; i < size; i++)

tallies[i] = other. tallies[i];
}
return *this;

}

The core piece of code is very reminiscent of the commands used in the copy constructor and destruc-
tor, as we are in essence throwing away our old state and then resetting a new state. However,
we wish to address one subtlety. Most of the body is shielded by the condition (this != &other).
When a user invokes an expression such as s = t, this is the address of the left-hand operand
while other is a reference to the right-hand operand (thus &other is the memory address of that
instance). Typically, if a user is going to bother to do an assignment, the left-hand and right-hand
operands will refer to different instances. But it is possible for someone to invoke what is known as
a self-assignment such as s = s. While it is unlikely that a programmer would author such code,
it is legal. More commonly, a self-assignment may occur when a programmer has two different
references to the same object yet does not realize so. In some contexts, code written as s = t may
actually involve a single instance.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

9. GENERIC PROGRAMMING AND TEMPLATES Page 48

If we recognize that we are being asked to assign an instance its own value, we may as well avoid
doing unnecessary work. The conditional block serves this purpose (notice that the final return
statement must still be executed, even for a self-assignment). Yet, our conditional treatment serves
a far more important role than simply for improved efficiency. If we did not shield a self-assignment
from this block of code, there are disastrous results. The problem is that we intentionally deleted the
“old” array, then we create a new array and subsequently try to copy information from other. tallies
into tallies. While this if fine in the general case, if other happens to be the same instance, we will
have just thrown away all our data and it is too late to recover it.

9 Generic Programming and Templates

The explicit type declarations of C++ introduces another challenge in comparison to Python. We
often wish to write pieces of code that are generic, in the sense that the same commands can be
applied to a variety of data types. For example, we might want a function that computes the
minimum of two values, or which swaps two values, irregardless of the precise data types of those
values. We may wish to have a class that manages data in a generic way, with flexibility as to the
underling data type.

Code that is capable of working with a variety of data types is known as polymorphic. In
Python, polymorphism is supported directly through dynamic typing, as a programmer can write
functions and classes without explicitly declaring the data types of the parameters. C++ supports
polymorphism using a technique known as templating. In this section, we discuss the use of
templated functions and templated classes.

9.1 Templated Functions

In Python, it is easy to write a generic function that is capable of operating with a variety of data
types. As an example, we might write a function for computing the minimum of two values as

def min(a, b):
if a < b:

return a
else

return b

If we send two integers as parameters, this function properly returns the smaller value. If we send
two strings as parameters, this function returns the one that occurs first alphabetically. We do not
need to explicitly declare the data types. So long as the < operator is well defined for the given
data, the function works at run-time; if not, a run-time error will occur.

With the static typing of C++, we need additional support for writing such a general function.
If we were only interested in such a function for integers, we might write

int min(const int& a, const int& b) {
if (a < b)

return a;
else

return b;
}

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

9. GENERIC PROGRAMMING AND TEMPLATES Page 49

If we were only interested in such a function for strings, we might write

string min(const string& a, const string& b) {
if (a < b)

return a;
else

return b;
}

But we do not wish to write many different versions of such a function when one suffices. The
challenge in C++ is that we must explicitly declare the type of all parameters and of the return
type. Support for such generality in C++ is provided using a mechanism known as a template. We
can define a function in a general way by declaring a placeholder for the type name immediately
before the function definition. In the case of min, the templated function appears as follows.

template <typename T>

T min(const T& a, const T& b) {
if (a < b)

return a;
else

return b;
}

The first line designates the identifier T as a hypothetical type name. There is not actually a type
with that name and we could have chosen any new identifier as such. This serves as what is known
as the template parameter. We use it in the signature on the second line to designate the return
value and both parameters as having that same type.

When a call such as min(52,50) is attempted elsewhere in our program, the compiler tries to find
a match for the template parameter T that will satisfy the compile-time checking. In this particular
example, it will recognize that the call matches the function signature when using int in place of
the template parameter T. If a call is made with two string instances as parameters, the compiler
will resolve the template parameter as type string. After matching the template parameters, the
compiler then attempts to compile the templated code. A compilation error would be reported at
that time, for example if min were called on a data type that did not support the < operator used
in the body of our function5.

As a second example, we consider the basic task of swapping the values of two variables. In
Python, this can conveniently be done with a simultaneous assignment statement, such as a,b = b,a.
In C++, such a swap of values is typically accomplishes through use of a temporary variable using
an approach like the following:

temp = a;
a = b;
b = temp;

5As a subtle aside, this particular implementation does not properly handle a syntax such as
min("hello","goodbye") because the literals "hello" and "goodbye" are not technically strings. They are treated as
character arrays, in this particular example, with different lengths. Furthermore, the < operator for arrays does not
depend on the content of the arrays but on their memory addresses. More care would be required to add support for
such a syntax.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

9. GENERIC PROGRAMMING AND TEMPLATES Page 50

However to write such code generically, we would need to make a formal declaration for variable
temp and this depends on the data type being used. The <algorithm> library in C++ provides a
generic implementation of a function with signature swap(a,b) that accomplishes this task. It can
be implemented as a templated function as follows:

template <typename T>

void swap(T& a, T& b) {
T temp(a);
a = b;
b = temp;

}

Notice that the template parameter is used not only in declaring the parameter types, but also
in declaring the local variable temp. Also note that the parameters are passed by (non-const)
references so that assignments within the function body affect the actual parameters of the caller.

9.2 Templated Classes

In our next example, we revise the TallySheet class from Section 8.6 to demonstrate how templating
can be used in a class definition. Our original Python version was designed in a way so that it could
track counts for either integers or one-character strings. It relied on run-time type-checking so that
when a character is used as a value, it is converted to an appropriate integer when computing the
proper array index. The C++ version of TallySheet sketched in the previous section assumed that
the values to be tracked were integers. In particular, the constructor presumed that minVal and
maxVal were integers, as were the data members minV and maxV. In this section, our goal is to
provide a templated version that can operate on integers or characters.

A complete version of the updated class is given in Figure 20. We wish to draw attention to a
few aspects of the code. We begin by examining the data members declared in lines 4–7. Notice
that minV and maxV are declared using the template parameter type rather than specifically an
int. In contrast, size is left as an int because the size of the array is an integer, even if the user is
tracking characters from 'a' to 'z'. Similarly, we will maintain an array of integer counts, even if
those counts represent the number of occurrences of a given character.

The standard constructor can be found at lines 10–14. Notice that the two parameters are typed
as constant references to instances of the template type T in the signature. While the rest of this
constructor is identical to the one given earlier in this section, there is an important subtlety. We
initialize the integer size to be the value (maxVal−minVal+1). When the parameters maxVal and
minVal are integers, this is clearly a valid assignment. Less obviously, the assignment is valid even
when maxVal and minVal are of type char. C++ allows us to subtract one character from another,
producing an integer that is the distance between the two characters in the alphabet encoding.

The copy constructor, destructor, and assignment operators (lines 16–37) are almost verbatim
from the previous section, except for the use of the template parameter when designating other
variables of type TallySheet<T> as opposed to the simpler TallySheet; we will address this issue
further in Section 9.3. We see the use of the template type T for the parameters of the public
methods increment and getCount, as those are values in the user’s domain. As we did in Python, we
convert such a value to the integer index into the underlying array using a private toIndex method.
At line 76, that method relies on the use of subtraction for type T, similar to our computation of
the size in the constructor.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

9. GENERIC PROGRAMMING AND TEMPLATES Page 51

1 template <typename T>

2 class TallySheet {
3 private:
4 T minV;
5 T maxV;
6 int size;
7 int* tallies;
8
9 public:

10 TallySheet(const T& minVal, const T& maxVal) :
11 minV(minVal), maxV(maxVal), size(maxVal−minVal+1), tallies(new int[size]) {
12 for (int i=0; i < size; i++)
13 tallies[i] = 0;
14 }
15
16 TallySheet(const TallySheet<T>& other) :
17 minV(other. minV), maxV(other. maxV), size(other. size), tallies(new int[size]) {
18 for (int i=0; i < size; i++)
19 tallies[i] = other. tallies[i];
20 }
21
22 ˜TallySheet() {
23 delete[] tallies;
24 }
25
26 TallySheet<T>& operator=(const TallySheet<T>& other) {
27 if (this != &other) { // ignore self−assignments
28 minV = other. minV;
29 maxV = other. maxV;
30 size = other. size;
31 delete[] tallies; // throw away old array
32 tallies = new int[size]; // create new array with updated size
33 for (int i=0; i < size; i++)
34 tallies[i] = other. tallies[i];
35 }
36 return *this;
37 }
38
39 void increment(const T& val) {
40 int ind = toIndex(val);
41 if (!(0 <= ind && ind < size))
42 throw range error("Parameter out of range");
43 tallies[ind] += 1;
44 }

Figure 20: Templated TallySheet class (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

9. GENERIC PROGRAMMING AND TEMPLATES Page 52

45 int getCount(const T& val) const {
46 int ind = toIndex(val);
47 if (!(0 <= ind && ind < size))
48 throw range error("Parameter out of range");
49 return tallies[ind];
50 }
51
52 int getTotalCount() const {
53 int sum = 0;
54 for (int i=0; i < size; i++)
55 sum += tallies[i];
56 return sum;
57 }
58
59 void writeTable(ostream& out) const {
60 out << "Value Count Percent \n----- ------ -------\n";
61 int total = getTotalCount();
62 if (total == 0)
63 total = 1; // avoid division by zero
64
65 for (int ind=0; ind < size; ind++) {
66 string label = makeLabel(ind);
67 int count = tallies[ind];
68 float pct = 100.0 * count / total;
69 out << setw(5) << label << setw(7) << count;
70 out << fixed << setw(7) << setprecision(2) << pct << endl;
71 }
72 }
73
74 private:
75 int toIndex(const T& val) const {
76 int i = val − minV;
77 return i;
78 }
79
80 string makeLabel(int ind) const {
81 stringstream converter;
82 converter << T(ind + minV);
83 string output;
84 converter >> output;
85 return output;
86 }
87 };

Figure 20 (continuation): Templated TallySheet class.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

10. C++ CONTAINERS AND THE STANDARD TEMPLATE LIBRARY Page 53

The makeLabel method uses a stringstream to convert the index into a string that appropriately
matches the user’s domain value. That technique was introduced in Section 6.6. At line 82, we
use the syntax T(...) to ensure that the label is formatted as the appropriate data type (e.g., int,
char). Because ind is always an int, the intermediate expression ind + minV will also be an int,
even when minV is a char. By surrounding that value with the syntax T(...), it will be correctly
converted to the desired type before being inserted into the stream.

9.3 Using Templated Functions and Classes

When calling a templated function, the standard calling syntax will often suffice. For example,
we may use the expression min(52, 50) with our templated min function, and the compiler will
automatically determined that int should be used for the template parameter. However, the syntax
min(1, 0.5) would not be legal. The first operand is an int and the second is a double. While it is
permissible to send an int to a function that expects a double or to send a double to a function
that expects an int, C++ does not know whether we intended for the template parameter to be int

or double. In this case, we can make this explicit in the calling syntax as min<double>(1, 0.5).
Similarly, in the footnote on page 49, we discussed why a syntax min("hello","goodbye") was not
supported by our templated function because the literals are not technically strings. However, we
could legally use the syntax min<string>("hello","goodbye"), as the explicit template parameter
make the calling signature clear, and string parameters are implicitly created based on the literals.

For a templated class, such as our TallySheet, the declaration of the template parameter is
necessary. That is, it is illegal to make a declaration

TallySheet frequency('A','Z'); // illegal: must specify template parameter

That is, even though the apparent min and max value sent to the constructor are characters, the
compiler requires that the template parameter be clearly defined as part of the data type. The
correct declaration for such an instance is:

TallySheet<char> frequency('A','Z');

The official type of our frequency variable is TallySheet<char>. Formally, we get a distinct type
definition for each instantiation of the template parameter (ie TallySheet<char> is distinct from
TallySheet<int>). We see this issue arise in our original code for the class, as given in Figure 20. For
example, the copy constructor definition at line 16 takes a parameter that must be a TallySheet<T>

instance, matching the same template parameter as the given instance. This makes sense, as we
cannot make a TallySheet<char> instance as a copy of a TallySheet<int> instance. We see similar
usage in the signature for the assignment operator at line 26, as both the parameter and the return
type are explicitly TallySheet<T>.

10 C++ Containers and the Standard Template Library

In Python, most container types are able to handle heterogeneous data. For example, it is possible
to have a list composed as [5, 'alpha', {'a': 3, 'b': 5}], having three elements, the first being an
integer, the second a string, and the third a dictionary. This is possible in Python because the
list instance is stored as a sequence of references to objects, and it does not matter what types of
objects are referenced.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

10. C++ CONTAINERS AND THE STANDARD TEMPLATE LIBRARY Page 54

In C++, container types require a static declaration of the element type being stored, and thus
they are homogeneous by nature. However, most container definitions can be applied to a variety
of element types and are implemented using templates for generality (templates were discussed
in Section 9). The most commonly used data structures have been implemented as part of the
Standard Template Library, or STL for short. In this section, we give a brief introduction to
the main features of that library. In Section 10.1, we introduce the vector class as an example
of a typical STL class. We give an overview of several other classes in Section 10.2. Finally, in
Section 10.3, we discuss the concept of an iterator, which is used throughout the STL framework.

10.1 The vector Class

We begin by examining the vector class, which is defined in the <vector> library. A vector is
used to maintain an ordered sequence of values. Internally, the values are stored sequentially in
an array, and the class ensures that the underlying array is resized as necessary when elements
are added to the vector. A C++ vector is probably the closest analog to Python’s list class, but
we more accurately compare it to the more specialized array class in Python because a vector is
homogeneous and stored as a collection of values (rather than as a collection of references to values,
as with Python’s list). To demonstrate its basic usage, we consider the following sample code.

vector<string> groceries;
groceries.push back("bread");
groceries.push back("milk");
groceries.push back("cheese");
cout << groceries.size() << endl; // will be 3
cout << groceries[2] << endl; // will be ”cheese”
groceries[1] = "juice"; // replaces ”milk”

We start by noting that vector is a templated class. In this case, we are declaring a vector of
strings. By default, the newly instantiated vector is empty. The push back method is the C++
analog of Python’s append, adding the new value to the end of the sequence. The length of the
vector is returned by the size() method. As is the case with Python, elements are zero-indexed and
can be accessed with a syntax such as groceries[2]. However, unlike Python, C++ does not check
the validity of an index at run-time; it simply trusts the programmer (with potential disaster if the
programmer is wrong). A safer (yet slower) way to access an element in C++ is with the syntax
groceries.at(2); this version performs an explicit run-time check of the given index, throwing an
out of range exception when warranted. There are several other behaviors supported by the vector

class; we refer the interested reader to more detailed documentation elsewhere.

10.2 Other STL Classes

The Standard Template Library contains definitions for many other useful container classes. We
focus primarily on those that closely mirror Python’s built-in container classes, as shown in Fig-
ure 21. A great advantage of the STL framework is that all of its classes share some common
behaviors and interfaces. For example, the syntax data.size() is supported uniformly by all of
these data types to report the number of items stored in the container. In Section 10.3, we will
discuss how all containers provide a standard syntax for iterating over their elements.

The string class is formally part of the STL, although it is designed specifically for a sequence
of characters (as opposed to a sequence of arbitrary type). In contrast to Python’s immutable str

class, a C++ string is mutable and supports methods such as append, insert and erase that modify

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

10. C++ CONTAINERS AND THE STANDARD TEMPLATE LIBRARY Page 55

C++ Type Description Python analog

string character sequence str

vector array-based expandable sequence (homogeneous) list or array

list linked sequence (homogeneous)

set ordered set of unique elements (homogeneous) set

map associative mapping (homogeneous) dict

Figure 21: Commonly used classes from C++’s Standard Template Library (STL).

the contents of a string. The vector class, as introduced in Section 10.1, is an array-based sequence
of elements with support for arbitrary capacity. While the C++ vector class is quite similar to
the Python list class, it is important to note that there exists a list class in C++ supporting an
entirely different concept. The C++ list class represents an ordered sequence of elements, but one
that is stored internally as what is known as a “linked list,” rather than the array-based vector.

Both Python and C++ support a set class, but they use different underlying data structures
and provide different guarantees in terms of ordering and efficiency. Python’s sets are implemented
using an approach known as hashing, described in Chapter 13.3.2 of our book. This approach
provides constant-time operations in general, but the elements of the set are not well-ordered. In
contrast, the C++ set class represents an ordered set, implemented using a balanced binary search
tree similar to that described in Chapter 13.4 of our book. For this reason, the element-type for a
set must define a total ordering, by default based on an implementation of operator<.

We relied on the set class in an earlier piece of code in this document, namely when implementing
the DeluxeTV class in Figure 12 on page 35. At line 3 of that code, we declare instance variable
favorites having templated type set<int>. We add an element to the set at line 11 using the insert

method, and we remove an element at line 13 using the erase method. We will discuss the rest of
that example after introducing the concept of iterators in Section 10.3.

Finally, the C++ map class is the analog to the Python dict class. Rather than storing a
set of elements, it manages a collection of key-value pairs. As such, it requires two template
parameters, the first specifying the key-type and the second the associated value-type. As an
example, we could have implemented the TallySheet to keep track of frequencies by maintaining
a map from some key type to an integer frequency. For example, if counting characters, we may
declare map<char, int> tallies. As is the case with sets, C++ uses balanced binary trees to
implement maps, and the key type must define a total ordering, typically with operator<.

10.3 Iterators

Because a string or vector instance is stored in an underlying array, integer indices can be used to
efficiently describe the position of an element to be accessed. For most other STL container types,
integer indices are not supported. This is typically because a container is not inherently ordered or
because the underlying storage mechanism is not consistent with such a convention (for example, a
list instance implemented as a linked list, or a set instance implemented as a balanced search tree).

For this reason, all STL containers (including strings and vectors) provide support for describing
a “position” of an element using an instance of an iterator class. Iterator instances cannot be
directly created by a user, rather they are initially returned by some method of the class. These
iterators are then used to identify a particular element or location within a container in the context
of parameters and return values. Conceptually, they are similar in purpose to a pointer, but they

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

10. C++ CONTAINERS AND THE STANDARD TEMPLATE LIBRARY Page 56

are not necessarily a direct representation of a memory address. To explore the syntactic use of
iterators, we revisit a code fragment from our DeluxeTV class definition in Figure 12.

17 set<int>::iterator result = favorites.upper bound(channel);
18 if (result == favorites.end())
19 result = favorites.begin(); // wrap around to smallest channel
20 setChannel(*result);

The result variable is defined to have type set<int>::iterator. Formally, this is an instance of an
iterator class that is nested within the scope of the set<int> class. This is different from other
iterator classes, such as set<string>::iterator or vector<int>::iterator.

The value of result is initialized to the result of the call to upper bound, a method specific to the
set class. Before explaining the semantics of upper bound, we describe a related method named find
supported by sets. A call such as favorites.find(value) checks to see if the given value is contained in
the set, akin to the contains method in Python. If found, an iterator representing that element’s
position in the set is returned; if not, the sentinel end() is returned, by convention, to designate
the lack of such an element. In contrast, the upper bound method is one that relies on the fact
that C++’s sets are ordered. The formal semantics of a call to upper bound(value) is to locate the
smallest value in the set, if any, that is strictly greater than the parameter. So in the context of
DeluxeTV, we are looking for the next favorite that is found when moving upward from the current
channel setting. If there is no element of the set with a value greater than channel, the end sentinel
is returned, just as is done with find. We detect that case at line 18. For the television model, our
goal was to then wrap around to the smallest of all favorite channels. We accomplish this goal at
line 19 by calling another method named begin. In some sense, this is the opposite of end, except
that the result of begin is an iterator to the first actual position in the set (rather than a sentinel).
In the case of sets, the ordering begins with the least element.

The final lesson portrayed by the above code involves the use of syntax *result at line 20. In
context, the call to setChannel is used to implement the change of channels and the parameter to
that call must be the desired channel value. Just as there is a distinction between a pointer and
the value to which it points, we must make a distinction between an iterator and the underlying
element to which it refers. In this context, result is the iterator while *result is the corresponding
int value from the set, namely the favorite channel number.

Iterators can also be used to iterate through all elements of an STL container (hence, the term
iterator). As an example, here is code that prints out all favorite channels for our DeluxeTV using
the ++ operator to advance from one position to the next.

for (set<int>::iterator walk= favorites.begin(); walk != favorites.end(); ++walk)
cout << *walk << endl;

Note the significance between the asymmetric convention of begin and end. So long as the iterator
is not equal to the end sentinel, it represents the position of an actual element that can be printed.
When walk becomes equivalent to the end, the loop terminates; note that for an empty set, the
result of begin() is precisely that of end() and so there are zero iterations of the loop. This
form of loop is supported by all STL containers. We note the correspondence between going from
begin up to but not including end, just as Python handles ranges start:stop. Iterators for many
containers also support backwards iteration with the −− operator. Indexed classes such as vector

and string support random-access iterators that allow arbitrary step sizes using arithmetic such
as begin()+5 or end()−3.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

11. ERROR CHECKING AND EXCEPTIONS Page 57

Finally, we note that an assignment such as *walk = val can be used to modify an element of a
container in-place. However, if a container is designated as read-only with const, modification of
elements is not allowed. For this circumstance, all STL containers support a second class named
const iterator, that is similar to iterator but without the ability to modify the contents of the
underlying container. Note well that a const iterator is not the same as a const iterator, as the
former can be incremented and decremented but without modifying the underlying container, while
the latter can modify the underlying container but cannot be incremented or decremented.

11 Error Checking and Exceptions

11.1 Overview

As is the case with Python, C++ provides support for throwing and catching exceptions as a way
to handle exceptional cases that arise at run-time. C++ defines an exception type that is the base
class for a hierarchy of standard exception types defined in the <stdexcept> library. For example,
there is an out of range exception in C++ that is similar in purpose to Python’s IndexError, and a
domain error in C++ that is similar to Python’s ValueError. Programmers are also free to define
their own subclasses derived from exception. In Sections 11.2 and 11.3, we will give a brief overview
of the syntax for throwing and catching exceptions in C++. However, exceptions are not the
only way that C++ manages errors. In Section 11.4 we will discuss several other approaches for
error-handling.

11.2 Throwing an Exception

One of the examples we used in Python was that of a sqrt function that throws an exception when
the argument is a negative number. The implementation for such a function might begin as follows:

def sqrt(number):
if number < 0:

raise ValueError('number is negative')

Python uses the keyword raise to throw an exception, with the remaining argument being an
instance of the exception class to be thrown. In this example, ValueError('number is negative')
denotes the construction of a new instance of type ValueError, with the constructor for that class
accepting an error message as a string parameter. The syntax in C++ is quite similar, except that
we use the keyword throw rather than Python’s raise. The same code fragment would appear as
follows in C++:

double sqrt(double number) {
if (number < 0)

throw domain error("number is negative");

11.3 Catching an Exception

Exceptions can be caught and handled in both Python and C++ using a try construct. In Python
we saw that the corresponding handlers were labeled with the keyword except. In C++, the corre-
sponding handlers are labeled with the keyword catch. As with Python, there can be any number
of catch clauses as part of a try construct, each looking for one particular type of error, and there

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

11. ERROR CHECKING AND EXCEPTIONS Page 58

can be a final clause that catches anything else that was not yet caught. A generic example of the
C++ syntax is as follows

try {
// any sequence of commands, possibly nested

} catch (domain error& e) {
// what should be done in case of this error

} catch (out of range& e) {
// what should be done in case of this error

} catch (exception& e) {
// catch other types of errors derived from exception class

} catch (...) {
// catch any other objects that are thrown

}

If an exception is encountered, it will be handled by the first clause with a matching type declaration.
The final clause with parameter ... will match any object. If there were not such a final clause,
and an exception occurs that does not match any of the existing clauses, that exception would
be propagated to any outer nested scope, where it might be caught or if uncaught will cause the
program to terminate. Note that for all but the final case, the exception handler clause has access
to the declared variable e, with local scope, that is a reference to the exception instance that has
been caught. Additional information about that exception can be determined, for example with
the call e.what(), which returns the string message used when the exception was instantiated.

11.4 Other Approaches to Error-Handling

Despite having support for formally throwing and catching exceptions, this is not the only mech-
anism used by C++ for managing exceptional cases. In fact, due to legacy code, other techniques
are far more commonly seen in the standard packages.

As an example, consider what happens when you attempt to divide an integer by zero. In
Python, this causes a formal ZeroDivisionError to be raised, and a program could write code to
catch such an error. In C++, the behavior of such a division by zero is inherited from treatment in
C, and so it causes a run-time error but not formally by means of a throw statement. As a result,
it cannot in general be caught within a try construct, although, a programmer who is concerned
about the validity of a division can check the denominator before performing the operation to avoid
any such error.

Another legacy behavior from C is the treatment of array indexing. In Section 8.5, we discuss
how C++ computes the address of an array entry by using the index to compute a relative offset
from the beginning of the array. We also noted that C++ does not explicitly check whether an
index is within range for a declared array, and so access to an expression like measurements[k]
for a k that is too larger or is negative will likely have dire, but unpredictable consequences. In
Python, indices are always validated at run-time. A C++ programmer could also do such checks,
to ensure that an index always lies in the appropriate range. However, performing such a check at
run-time is a burden on the system. If a programmer is confident in the logical design of a program,
there is no need to explicitly perform such checks. But logical errors involving invalid indices are
difficult to detect and diagnose. Since both strings and vectors in C++ are implemented using
C-style arrays internally, the same issues arise as to how to handle error-checking of indices. The
designers of those classes struck a compromise. In Section 10.1 we differentiated between the two

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

11. ERROR CHECKING AND EXCEPTIONS Page 59

syntaxes measurements[k] and measurements.at(k) that are supported by strings and vectors. The
first is the more efficient version that does not explicitly error-check the index value (but which has
indeterminate behavior when errant). In contrast, the at method performs a run-time check of the
given index, formally throwing a out of range exception when errant.

Yet another mechanism for detecting errors is used by C++ for most I/O tasks such as
reading formatted data or working with files. As a basic example, we revisit the goal of read-
ing a number from 1 to 10 from a user. In Python, this is accomplished with the command
number = int(raw input('Enter a number from 1 to 10: ')), noting that the call to raw input

might throw exceptions if there were failures to read data from the user, and that the call to the
int constructor will fail if the string returned by raw input is not a legitimate representation of
an integral value. In Python, more robust code is based on catching the various exceptions that
occur with appropriate remedy. Our more robust C++ version of that task was given in Figure 8
on page 27. By default, C++ uses a mechanism based on what are known as error flags. A com-
mand such as cin >> number does not formally throw any exceptions. Instead, if various problems
arise, they are tracked through extra fields associated with the stream instance. We can check for
error cases after the command by polling those various flags using calls such as cin.fail(), cin.eof(),
cin.bad(), each of which denotes one of a certain set of possible errors that have occurred. Once
an error flag has been set, it is up to the program to find remedy, and to explicitly unset that
flag if the stream is going to continue to be used. Please review the prose on page 27 for further
explanation of that example.

Error flags are similarly used in C++ when working with file streams. As a tangible example,
Figure 8.6 on page 283 of our book gives a Python function for opening an existing file based on a
filename given by the user, with appropriate error-checking to ensure success. In translating that
example to C++, we cannot return a local variable for the resulting file stream, as file streams
cannot be passed by value, so we use a signature in which the caller passes an uninitialized file
stream as a parameter, and the function’s responsibility is to open the underlying file. Our C++
variant is given in Figure 22. Notice that we rely on polling the result of is open(). This method is
supported by the file stream classes, in addition to the other accessors such as eof and bad, inherited
from the more general stream classes.

void openFileReadRobust(ifstream& source) {
source.close(); // disregard any previous usage of the stream
while (!source.is open()) {

string filename;
cout << "What is the filename? ";
getline(cin, filename);
source.open(filename.c str());
if (!source.is open())

cout << "Sorry. Unable to open file " << filename << endl;
}

}

Figure 22: A C++ function for robustly opening a file with read-access.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 60

12 Managing Large Projects

Thus far, we have assumed that source code for a project is contained in a single file. For medium-
and large-scale software projects, it is more common to have source code divided among many
different files. There are several advantages to such a design. A multi-file structure can support a
more natural decomposition for complex project, while also allowing a team of developers to edit
different files concurrently. Furthermore, having components of a program in different files provides
a better structure for version control and reuse of source code across projects.

As a simple demonstration of a more typical C++ structure, we revisit our first example from
Figure 1 on page 8, in which we define a gcd function as well as a main function for testing it.
A multi-file version of that project might appear as in Figure 23. In our new design, we have
intentionally separated the implementation of the gcd function from the piece of code (in this case,
the main function) that relies upon the gcd function. To coordinate the interactions between those
two, we created the file gcd.h which is known as a header file; note that we were not required to
name the file gcd.h, but this choice is reasonably conventional. The purpose of that file is not to
implement the gcd function, but to provide a formal definition of its interface. This is accomplished
at line 3 of that file, which gives the full signature of the function but without a subsequent function
body (we will discuss the purpose of the other lines in gcd.h later).

With the information encapsulated in the header file, we are able to independently define the two
other components of our software. We use the #include "gcd.h" directive from within the other
files to load this definition. This is the same directive we have already seen for loading definitions
from standard libraries, such as with <iostream> at line 2 of gcdTest.cpp. The distinction between

gcd.h

1 #ifndef GCD H
2 #define GCD H
3 int gcd(int u, int v); // forward declaration
4 #endif

gcd.cpp gcdTest.cpp

1 #include "gcd.h"

2
3 int gcd(int u, int v) {
4 /* We will use Euclid's algorithm
5 for computing the GCD */
6 int r;
7 while (v != 0) {
8 r = u % v; // compute remainder
9 u = v;

10 v = r;
11 }
12 return u;
13 }

1 #include "gcd.h"

2 #include <iostream>

3 using namespace std;
4
5 int main() {
6 int a, b;
7 cout << "First value: ";
8 cin >> a;
9 cout << "Second value: ";

10 cin >> b;
11 cout << "gcd: " << gcd(a,b) << endl;
12 return 0;
13 }

Figure 23: GCD project with source code consisting of three files.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 61

the quotation marks around "gcd.h" versus the angle brackets around <iostream> is because we
presume that the gcd.h file is stored in the same directory as the file gcdTest.cpp, whereas the
iostream library definitions are installed elsewhere on the system (in a path known to the compiler).
With "gcd.h" included from within gcdTest.cpp, the compiler is able to verify the proper usage
of the call to the gcd function at line 11. Note well that it does not matter in that context how the
gcd function is implemented, only that the type of parameters and return value are known.

The purpose of the gcd.cpp file is to implement the gcd function. We include the header file
at line 1 to ensure consistency of the signature, although this is not technically required.

12.1 Compilation and Linking

In the original version of our project, with all code within a single-file named gcd.cpp, we compiled
the program into an executable named gcd with the following command.

g++ -o gcd gcd.cpp

With our new design, the appropriate compiler command for building an executable named gcd is
the following.

g++ -o gcd gcd.cpp gcdTest.cpp

Notice that we provide both files gcd.cpp and gcdTest.cpp as inputs to the compiler. This
is because each of them includes part of our implementation. In contrast, we do not explicitly
indicate the header file gcd.h; the definitions from within that file are already explicitly included
by the #include directive when compiling the other files.

To build the executable, both parts of the source code must be individually compiled, and then
those parts are combined to create the final executable. Formally, these are separate stages of
the compilation process. Since the implementation of the function in gcd.cpp does not overtly
depend upon the code that calls the function, the compiler can analyze it independently, checking
for validity and converting the high-level commands into appropriate machine code. Similarly, the
commands of the main function in gcdTest.cpp can be independently compiled into machine code
without regard to the details of the gcd function body.

The final stage of the compilation process is known as linking. Once the individual pieces have
been converted to machine code, the system must assemble them into a single, coherent executable
that can be executed on the system. The primary goal of the linking stage is to ensure that all
necessary functions have been defined in precisely one of the components. That is, if we tried to
compile the file gcdTest.cpp without gcd.cpp, the linker would report an error that it cannot
find the implementation of the function gcd that is being called from within main. In contrast, if
we were to attempt to compile gcd.cpp without gcdTest.cpp, the linker would complain that it
cannot find a main function, a requirement for any executable.

The given g++ command from above performs both the compilation and linking phases by
default. That said, it is possible to request that a component be compiled, but to defer the linkage.
For example, to compile the gcd function, but not yet link it to any executable, we could execute
the command

g++ -c gcd.cpp

The -c flag in the command is what designated our desire to perform compilation only. The result
of a successful compilation in this case is a new binary file named gcd.o that is known as object

code. One advantage of having this object code stored in a file is that it allows us greater reuse
without additional compilation. For example, if we wanted to use our gcd function in several
projects, each of those could make use of our pre-compiled object code rather than re-compiling

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 62

from the original source code. In our example, if we presume that we have preliminary created
both gcd.o and gcdTest.o as object code, we can invoke the final linking to produce an executable
with the command.

g++ -o gcd gcd.o gcdTest.o

For large-scale problems, there is another great advantage of separating out the compilation
of object code from that of the linking phase. If you envision a project that might be composed
of hundreds if not thousands of files, the full compilation process is a timely one. During the
development cycle, it is common to have compiled the program, to make changes to one or more
of the source code files, and then to re-compile the entire project. However, with good modular
design, a change to one piece of source code should not effect most of the other components. In
this case, we will need to re-generate the object code for the modified source code, and perhaps a
few other dependent pieces, but the majority of the components will not need to be rebuilt from
scratch. Instead, those few components can be recompiled into object code, and then all of the
object code can be relinked to form a new executable. Although the linking phase requires some
work, it is not nearly as time-consuming as the original compilation.

Finally, we note that for larger problems, there are other tools to assist developers in managing
their projects. For example, many Integrated Development Environments (IDEs) will keep track of
which pieces of source code have been modified, and which need to be re-compiled when building a
new executable. One of the classic tools for developers in managing the (re)building of a project is a
program known as make. This program relies upon a configuration file for the project, conventionally
named makefile. The makefile designates what components comprise the project, and upon which
pieces of source code each component depends. The make command causes a re-build of the entire
project, but relying on the file-system timestamps to determine which pieces of source code have
been edited since the previous build.

12.2 Avoiding Multiple Definitions

Header files are typically used to provide formal declarations of functions or classes. It seems
pretty clear that you would not want to include two conflicting definitions for something. As it
happens, it is also illegal to repeat the same definition for something more than once. While this
might seems easy to avoid, there are several pitfalls when including header files throughout a larger
project. For example, assume we have an application that will rely on our gcd function, as well as
a Fraction class. Source code for that project might naturally start with the following declarations.

#include "gcd.h"

#include "Fraction.h"

The problem is that the definition of the Fraction class might also depend upon use of the
gcd function for reducing fractions to lowest terms. So it is possible that there might be an
#include "gcd.h" within the Fraction header file. If this were the case, then the contents of gcd.h
are inherently being included twice in the above code.

To properly avoid errant repetitions of definitions from a header file, those files take advantage of
other preprocessor directives, as shown in our gcd.h file from Figure 23. These directives, beginning
with #, are not formally C++ syntax, rather a separate set of commands that are understood by
the compiler (as with #include). Our gcd.h file begins with the #ifndef GCD H directive on line 1
paired with the #endif directive on line 4. The #ifndef syntax is short for “if not defined.” It looks
for whether the term GCD H has been previously defined, only using the body of that conditional
when it has not been defined. In this context, the first time we included the contents of gcd.h, no

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 63

such symbol GCD H has been defined, and so we will include the body of that conditional (lines 2
and 3). The purpose of the #define GCD H directive on line 2 is to introduce the symbol GCD H
to the compiler so that the #ifndef directive at line 1 will fail for any subsequent inclusions of
gcd.h. We will use a similar guard mechanism for all header files in a larger project, choosing a
distinct symbol for each (e.g., GCD H).

Line 3 of the file gcd.h is a forward declaration of the gcd function. This defines the signature
of the function, yet we do not explicitly include the body of the function in that file. The forward
declaration has the relevant information for doing compile-time checking, for example when making
the call to gcd from within gcdTest.cpp, so the function body is not needed. More importantly, it is
important that we do not place the body of the gcd function inside the header file. Otherwise, there
would be a problem if two or more .cpp files include such a header. Each .cpp file is independently
compiled into object code, and so the #ifndef guard would allow the definition to be read once for
each .cpp file. Having the forward declaration in each is permissible, but if the function body were
included, the compiled version of that body would be embedded within the object code associated
with each .cpp file. This in turn would cause a linking-error when the object codes were combined,
as there would be duplicate definitions for the function to contend with. In our actual project, it
is only the compiled version of gcd.cpp that has the implementation of the gcd function, so there
is no ambiguity when compiling and linking.

12.3 Namespaces

Another concern with larger projects is that several components may wish to use the same identifier
for a feature such as a variable, function, or class. If all components were authored by the same
team, perhaps such naming conflicts could be avoided. However, often we need to rely upon software
packages written by others that cannot be modified. For example, a civil engineering application
might need to include an architecture package that defines a Window class (i.e., a plane of glass) and
a graphical user interface package that defines its own Window class (i.e., a rectangle on a computer
screen). Including such conflicting definitions for the identifier Window would be illegal.

Python tackles the issue of naming-conflicts by supporting two forms for import. A command
such as import architecture introduces the name architecture into the default namespace, as an iden-
tifier for the imported module. Then, a qualified name architecture.Window can be used to describe
the Window class from that module. In contrast, a syntax such as from architecture import Window
introduces the name Window directly into the default namespace. However, this form would be
conflicting with another command from gui import Window.

In C++, name conflicts can be mitigated by organizing related definitions into a separate names-
pace using a syntax such as the following:

namespace architecture {
class Window {

...
};
class Building {

...
};

}

After this definition, the Window class can be identified with a qualified name architecture::Window.
This style would allow another part of a program to include the architecture code and to include

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 64

the gui code, while being able to differentiate unambiguously between architecture::Window and
gui::Window. At the same time, it is possible for a programmer to introduce definitions from such a
namespace into the default namespace. For example, following the above definition, a subsequent
command using architecture::Window; would introduce the architecture::Window definition into the
default namespace with the unqualified name Window (akin to from architecture import Window in
Python.). All definitions from a namespace can be added to the default namespace, for example
using the command using namespace architecture; (akin to from architecture import * in Python).

We have already seen such a use of namespaces in our C++ code. By default, most standard
libraries in C++ introduce their definitions into a special namespace identified as std, rather than
directly in the default namespace. For example, the <iostream> library defines the streams cin and
cout into the std namespace. Since the fully-qualified names std::cin and std::cout require extra
typing, programmers often bring everything from the standard namespace into the default with the
command using namespace std; such as at line 3 of our gcdTest.cpp program in Figure 23.

12.4 Managing Class Definitions

In Section 12.2 we emphasized that header files should provide function definitions, but not imple-
mentations for those functions. The rule is somewhat different in regard to member functions of
a class definition. The implementation for those functions can either be given directly within the
context of the class definition or externally. As a demonstration, we revisit the robust definition
of the Point class as originally shown in Figures 10 and 11 in Section 7.2. Our revised version has
been divided into two files Point.h and Point.cpp, as shown in Figures 24 and 25 respectively.

The header file defines the Point class, specifying the data members and the signatures of the
member functions. Notice that for some simple functions, such as getX and setX, we have embedded
the function bodies directly within the header file. Formally, those are processed by the compiler so
that they become in-lined code at run-time, rather than a formal function call. In most other cases,
we defer the implementation of the function to the Point.cpp file. Note well that we chose note to
state using namespace std from within the header file, to avoid polluting the default namespace
for others including this file. As a result, we explicitly designated the type std::ostream at line 26.

Looking at Figure 25, we see the remaining implementations of the functions from the Point
class. Since this file is not directly being included by others, we promote the std namespace to
the default at line 4 for our convenience. We wish to draw attention to the form of the signatures
in this file, for example, that of Point::scale at line 8. Because this code is not formally included
within the scope of the original Point class definition, we cannot simply write the signature as

void scale(double factor)

That would appear to be the signature of a stand-alone function named scale, rather than the
member function of the Point class with that name. To properly declare that we are implementing
the member function, we must use the qualified function name Point::scale to re-establish the proper
scope. Having done so, the body itself is interpreted with the proper context. Therefore, we are
able to access data members such as x and y, as done on lines 9 and 10. Notice that at line 20,
within the body of the normalize function, we are able to call the distance method within need to
qualify it as Point::distance because the proper scope has already been established for the body.

As a final comment, we draw attention to our treatment of the two stand-alone functions,
namely operator* and operator<<, that provide support for operator usage when the Point is
a right-hand operand. In our original treatment of the Point class, we explained the need for
having those definitions outside the formal class. They remain as such in our new design, with

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 65

1 #ifndef POINT H
2 #define POINT H
3 #include <iostream> // need ostream definition for operator<< signature
4
5 class Point {
6 private:
7 double x;
8 double y;
9

10 public:
11 Point(double initialX=0.0, double initialY=0.0);
12 double getX() const { return x; } // in-lined function body
13 void setX(double val) { x = val; } // in-lined function body
14 double getY() const { return y; } // in-lined function body
15 void setY(double val) { y = val; } // in-lined function body
16 void scale(double factor);
17 double distance(Point other) const;
18 void normalize();
19 Point operator+(Point other) const;
20 Point operator*(double factor) const;
21 double operator*(Point other) const;
22 }; // end of Point class
23
24 // Free-standing operator definitions, outside the formal Point class definition
25 Point operator*(double factor, Point p);
26 std::ostream& operator<<(std::ostream& out, Point p);
27 #endif

Figure 24: Point.h header file for our Point class.

forward declarations given at lines 25 and 26 of Point.h and implementations given at lines 39–
46 of Point.cpp. Because these are not formal member functions, note that we do not designate
Point:: scope in their signatures. For example, line 43 of Point.cpp names the function operator<<

rather than Point::operator<<. In similar spirit, line 39 defines operator*, not to be confused from
the forms of Point::operator* that are given at lines 29 and 33.

12.5 Managing Templated Classes

The conventions are different when it comes to the treatment of templated classes in a multi-file
project. The main issue is that templated code is not pre-compiled into independent object-code,
because the underlying machine code depends intricately on the actual data type supplied as the
template parameter. Therefore, templated code is compiled as needed when instantiated from other
contexts. As a result, we use a slightly different convention for embedding the source code within
separate files.

There remains a choice of whether to embed implementations for member functions withing
the formal class definition or externally. However, even when external to the class definition,
the implementations must formally be included (directly or indirectly) as part of the header file,

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 66

1 #include "Point.h"

2 #include <iostream> // for use of ostream
3 #include <cmath> // for sqrt definition
4 using namespace std; // allows us to avoid qualified std::ostream syntax
5
6 Point::Point(double initialX, double initialY) : x(initialX), y(initialY) { }
7
8 void Point::scale(double factor) {
9 x *= factor;

10 y *= factor;
11 }
12
13 double Point::distance(Point other) const {
14 double dx = x − other. x;
15 double dy = y − other. y;
16 return sqrt(dx * dx + dy * dy); // sqrt imported from cmath library
17 }
18
19 void Point::normalize() {
20 double mag = distance(Point()); // measure distance to the origin
21 if (mag > 0)
22 scale(1/mag);
23 }
24
25 Point Point::operator+(Point other) const {
26 return Point(x + other. x, y + other. y);
27 }
28
29 Point Point::operator*(double factor) const {
30 return Point(x * factor, y * factor);
31 }
32
33 double Point::operator*(Point other) const {
34 return x * other. x + y * other. y;
35 }
36
37 // Free−standing operator definitions, outside the formal Point class scope
38
39 Point operator*(double factor, Point p) {
40 return p * factor; // invoke existing form with Point as left operand
41 }
42
43 ostream& operator<<(ostream& out, Point p) {
44 out << "<" << p.getX() << "," << p.getY() << ">"; // display using form <x,y>
45 return out;
46 }

Figure 25: Point.cpp source code for our Point class.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 67

rather than as a separately compiled .cpp file. Still, to ease in the separation of the interface and
implementation, it is a common convention to have a separate .h file in the style of the standard
class, and the bodies in another file using a special suffix such as .tcc. That is to differentiate it
from a standard .cpp file. The .tcc file is explicitly included from within the header file.

As a concrete example, we refer to Appendix A.1 of this document, where we give a complete
implementation of our Tally Sheet project. In particular, we give code for TallySheet.h in Fig-
ure 26. We draw particular attention to line 80 of that source code which reads

#include "TallySheet.tcc"

This causes all the definitions from the second file to be explicitly included from within the header,
and thereby indirectly included by any other file that includes the header.

Finally, we look at the style for implementing member functions within the TallySheet.tcc

file, as shown in Figure 27 in the appendix. As was the case with our Point class, it is important
to re-establish the proper scope when declaring the function signature. Because we are defining
functions of a templated class, we must use the formal template syntax for each individual function,
as shown in the following excerpt.

79 template <typename T>

80 int TallySheet<T>:: toIndex(const T& val) const {
81 int i = val − minV;
82 return i;
83 }
84
85 template <typename T>

86 string TallySheet<T>:: makeLabel(int ind) const {
87 stringstream converter;
88 converter << T(ind + minV);
89 string output;
90 converter >> output;
91 return output;
92 }

12.6 Unit Testing

In Python, we demonstrated how unit tests could be embedded in the same file as a module using
the construct

if name == '__main__':

That convenient style allows for test code to be run conditionally when the interpreter is executed
directly on that file, but ignored when the module is imported from some other file.

Unfortunately, there is no standard way to embed unit testing within the same source code
files as the code that is to be tested. The issue is that any executable must begin with a call
to a main routine, but when multiple files are compiled and linked, there must be precisely one
main routine defined. This was precisely the problem we pointed out with our original, single-file
implementation of the gcd program from Figure 1 on page 8. Because the main routine is defined
in that file, it becomes impossible for any other applications with their own main routine to be

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

12. MANAGING LARGE PROJECTS Page 68

combined with this definition of the gcd function. That is why the revised version introduced at
the beginning of this section relies on having a separate gcdTest.cpp file for testing. The unit test
can be compiled by combining both gcd.cpp and gcdTest.cpp when compiling. However, we could
build other executables that rely on gcd by linking some source code with gcd.cpp (but without
gcdTest.cpp).

12.7 Documentation

Python also provided a built-in mechanism for embedding documentation strings directly within
the source code files, with standard tools for generating documentation based upon those strings.
Although comments can be embedded within C++ source code, there is no support for generating
documentation from those comments in the standard C++ distribution. That said, there is a
widely-used, third-party tool known as Doxygen (see www.doxygen.org) that can be used to embed
actionable documentation within source code.

Doxygen supports several choices of conventions. One such style relies on comments between
delimiters /** and */. Note that the starting delimiter /** begins with /* and therefore it is
recognized by the C++ compiler as a standard comment. But the additional asterisk causes
Doxygen to treat this as formal documentation. We demonstrate this style of comments throughout
the source code given in the appendix to this document. As an example, Figure 33 of Appendix A.2
shows a documented version of a Pattern class for the game Mastermind. The compareTo function
of that class is documented as follows:

46 /**
47 * \brief Compare the current pattern to another and calculate the score.
48 *

49 * \param otherPattern the pattern to be compared to the current one
50 * \return a Score instance representing the result.
51 */
52 Score compareTo(const Pattern& otherPattern) const;

Within the comment, we use reserved control sequences such as \brief, \param, and \return to tag
key pieces of information. When compiled with Doxygen, the documentation for the function might
be rendered as follows:

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 69

A Full Source Code

As a conclusion, we offer complete source code that mirrors several projects that were implemented
in Python within our book.

A.1 Tally Sheet and Frequency Counting

This section contains complete C++ code for a project that closely mirrors the Python project
originally presented in Chapter 8.5.3 of our book for computing frequency counts. The TallySheet
class we use here is similar to the templated one from Section 9.2, however this time we break it into
separate TallySheet.h and TallySheet.cpp files, shown in Figures 26 and 27 respectively, includ-
ing full documentation. We also include a C++ version of the FileUtilities component given in our
Python version. This consists of files FileUtilities.h and FileUtilities.cpp, Figures 28 and 29
respectively. Finally, we give two sample applications using these tools. Specifically, Figure 30 dis-
plays the contents of file CountLetters.cpp, the main driver for computing letter frequencies, and
Figure 31 contains CountScores.cpp, the corresponding driver for counting integer scores.

A.2 Mastermind

As our final project, we implement a text-based version of the Mastermind game, based closely
upon the design of our Python version from Chapter 7 of our book. This project consists of the
following components:

� a Score class as defined in Score.h of Figure 32. There is no Score.cpp because we in-line
all of the function bodies for this simple class.

� a Pattern class as defined in Pattern.h of Figure 33 and Pattern.cpp of Figure 34.

� a TextInput class as defined in TextInput.h of Figure 35 and TextInput.cpp of Figure 36.

� a TextOutput class as defined in TextOutput.h of Figure 37 and TextOutput.cpp of Figure 38.

� a Mastermind class as defined in Mastermind.h of Figure 39 and Mastermind.cpp of Figure 40.

� The main driver for our text-based game, implemented in Mastermind main.cpp of Figure 41.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 70

1 #ifndef TALLYSHEET H
2 #define TALLYSHEET H
3 #include <iostream>

4
5 /**
6 * \brief Manage tallies for a collection of values.
7 *

8 * Values can either be from a consecutive range of integers, or a
9 * consecutive sequence of characters from the alphabet.

10 */
11 template <typename T>

12 class TallySheet {
13 private:
14 T minV;
15 T maxV;
16 int size;
17 int* tallies;
18
19 public:
20 /**
21 * \brief Create an initially empty tally sheet.
22 *

23 * \param minVal the minimum acceptable value for later insertion
24 * \param maxVal the minimum acceptable value for later insertion
25 */
26 TallySheet(const T& minVal, const T& maxVal);
27
28 /**
29 * \brief Make a copy of the given instance.
30 */
31 TallySheet(const TallySheet<T>& other);
32
33 /**
34 * \brief Assign one instance the state of another.
35 */
36 TallySheet<T>& operator=(const TallySheet<T>& other);
37
38 /**
39 * \brief Destruct the current instance.
40 */
41 ˜TallySheet();

Figure 26: Contents of TallySheet.h file. (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 71

42 /**
43 * \brief Increment the tally for the respective value.
44 */
45 void increment(const T& val);
46
47 /**
48 * \brief Return the total number of current tallies for the given value.
49 */
50 int getCount(const T& val) const;
51
52 /**
53 * \brief Return the total number of current tallies.
54 */
55 int getTotalCount() const;
56
57 /**
58 * \brief Write a comprehensive table of results.
59 *

60 * Report each value, the count for that value, and the percentage usage.
61 *

62 * \param out an open output stream.
63 */
64 void writeTable(std::ostream& out) const;
65
66 private:
67 /**
68 * \brief Convert from a native value to a legitimate index.
69 *

70 * \return the resulting index (such that minV is mapped to 0)
71 */
72 int toIndex(const T& val) const;
73
74 /**
75 * \brief Convert index to a string in native range.
76 */
77 std::string makeLabel(int ind) const;
78 };
79
80 #include "TallySheet.tcc"

81 #endif

Figure 26 (continuation): Contents of TallySheet.h file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 72

1 #include <iostream>

2 #include <stdexcept>
3 #include <iomanip>

4 #include <sstream>

5 using namespace std;
6
7 template <typename T>

8 TallySheet<T>::TallySheet(const T& minVal, const T& maxVal) :
9 minV(minVal), maxV(maxVal), size(maxVal−minVal+1), tallies(new int[size]) {

10 for (int i=0; i < size; i++)
11 tallies[i] = 0;
12 }
13
14 template <typename T>

15 TallySheet<T>::TallySheet(const TallySheet<T>& other) :
16 minV(other. minV), maxV(other. maxV), size(other. size), tallies(new int[size]) {
17 for (int i=0; i < size; i++)
18 tallies[i] = other. tallies[i];
19 }
20
21 template <typename T>

22 TallySheet<T>::˜TallySheet() {
23 delete[] tallies;
24 }
25
26 template <typename T>

27 TallySheet<T>& TallySheet<T>::operator=(const TallySheet<T>& other) {
28 if (this != &other) { // ignore self−assignments
29 minV = other. minV;
30 maxV = other. maxV;
31 size = other. size;
32 delete[] tallies; // throw away old array
33 tallies = new int[size]; // create new array
34 for (int i=0; i < size; i++)
35 tallies[i] = other. tallies[i];
36 }
37 return *this;
38 }
39
40 template <typename T>

41 void TallySheet<T>::increment(const T& val) {
42 int ind = toIndex(val);
43 if (!(0 <= ind && ind <= size))
44 throw range error("Parameter out of range");
45 tallies[ind] += 1;
46 }

Figure 27: Contents of Tallysheet.tcc file. (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 73

47 template <typename T>

48 int TallySheet<T>::getCount(const T& val) const {
49 int ind = toIndex(val);
50 if (!(0 <= ind && ind <= size))
51 throw range error("Parameter out of range");
52 return tallies[ind];
53 }
54
55 template <typename T>

56 int TallySheet<T>::getTotalCount() const {
57 int sum = 0;
58 for (int i=0; i < size; i++)
59 sum += tallies[i];
60 return sum;
61 }
62
63 template <typename T>

64 void TallySheet<T>::writeTable(ostream& out) const {
65 out << "Value Count Percent \n----- ------ -------\n";
66 int total = getTotalCount();
67 if (total == 0)
68 total = 1; // avoid division by zero
69
70 for (int ind=0; ind < size; ind++) {
71 string label = makeLabel(ind);
72 int count = tallies[ind];
73 float pct = 100.0 * count / total;
74 out << setw(5) << label << setw(7) << count;
75 out << fixed << setw(7) << setprecision(2) << pct << endl;
76 }
77 }
78
79 template <typename T>

80 int TallySheet<T>:: toIndex(const T& val) const {
81 int i = val − minV;
82 return i;
83 }
84
85 template <typename T>

86 string TallySheet<T>:: makeLabel(int ind) const {
87 stringstream converter;
88 converter << T(ind + minV);
89 string output;
90 converter >> output;
91 return output;
92 }

Figure 27 (continuation): Contents of Tallysheet.tcc file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 74

1 #ifndef FILE UTILITIES H
2 #define FILE UTILITIES H
3 #include <string>

4 #include <fstream>

5
6 /**
7 * \brief Repeatedly prompt user for filename until successfully opening with read access.
8 *

9 * \param fin input file stream to be opened
10 */
11 void openFileReadRobust(std::ifstream& fin);
12
13 /**
14 * \brief Repeatedly prompt user for filename until successfully opening with write access.
15 *

16 * \param fout output file stream to be opened
17 * \param defaultName a suggested filename. This will be offered
18 * within the prompt and used when the return key is pressed without
19 * specifying another name
20 */
21 void openFileWriteRobust(std::ofstream& fout, const std::string& defaultName);
22 #endif

Figure 28: FileUtilities.h header file.

1 #include "FileUtilities.h"

2 #include <fstream>

3 #include <iostream>

4 using namespace std;
5
6 void openFileReadRobust(ifstream& source) {
7 source.close(); // disregard any previous usage of the stream
8 while (!source.is open()) {
9 string filename;

10 cout << "What is the filename? ";
11 getline(cin, filename);
12 source.open(filename.c str());
13 if (!source.is open())
14 cout << "Sorry. Unable to open file " << filename << endl;
15 }
16 }

Figure 29: FileUtilities.cpp implementation (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 75

17 void openFileWriteRobust(ofstream& fout, const string& defaultName) {
18 cout << "Within openFileWriteRobust" << endl;
19 fout.close();
20 while (!fout.is open()) {
21 string filename;
22 cout << "What should the output be named [" << defaultName << "]? ";
23 getline(cin, filename);
24 if (filename.size() == 0)
25 filename = defaultName;
26 fout.open(filename.c str());
27 if (!fout.is open())
28 cout << "Sorry. Unable to write to file " << filename << endl;
29 }
30 }

Figure 29 (continuation): FileUtilities.cpp implementation..

1 #include "FileUtilities.h"

2 #include "TallySheet.h"

3 #include <cctype> // provides isalpha and toupper
4 #include <iostream>

5 #include <fstream>

6 using namespace std;
7
8 int main() {
9 ifstream source;

10 ofstream tallyfile;
11 TallySheet<char> sheet('A', 'Z');
12 cout << "This program counts the frequency of letters." << endl;
13 cout << "Only alphabetic characters are considered." << endl << endl;
14 openFileReadRobust(source);
15 while (!source.eof()) {
16 char character;
17 source >> character;
18 if (isalpha(character))
19 sheet.increment(toupper(character));
20 }
21 source.close();
22
23 openFileWriteRobust(tallyfile, "frequencies.txt");
24 sheet.writeTable(tallyfile);
25 tallyfile.close();
26 return 0;
27 }

Figure 30: Main driver for computing frequency of letter usage.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 76

1 #include "FileUtilities.h"

2 #include "TallySheet.h"

3 #include <iostream>

4 #include <fstream>

5 #include <vector>

6 #include <algorithm>

7 using namespace std;
8
9 int main() {

10 ifstream source;
11 ofstream tallyfile;
12
13 cout << "This program tallies a set of integer scores." << endl;
14 cout << "There should be one integer per line." << endl << endl;
15
16 openFileReadRobust(source);
17 vector<int> values;
18 while (source.good()) {
19 int val;
20 source >> val;
21 if (source.good())
22 values.push back(val);
23 else { // ignore noninteger line
24 source.clear();
25 source.ignore(std::numeric limits<int>::max(), '\n');
26 }
27 }
28 source.close();
29
30 int small, large;
31 small = *min element(values.begin(), values.end());
32 large = *max element(values.begin(), values.end());
33 TallySheet<int> sheet(small, large);
34 for (int i=0; i < values.size(); i++)
35 sheet.increment(values[i]);
36
37 openFileWriteRobust(tallyfile, "frequencies.txt");
38 sheet.writeTable(tallyfile);
39 tallyfile.close();
40 cout << "The tally has been written." << endl;
41
42 return 0;
43 }

Figure 31: Main driver for computing frequency of integer scores.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 77

1 #ifndef SCORE H
2 #define SCORE H
3
4 /**
5 * \brief A score for a single turn from game of Mastermind.
6 *

7 * A ”black” component designates the number of pegs that are
8 * exact matches for the answer. A ”white” component counts
9 * pegs that are correctly colored but not well positioned.

10 */
11 class Score {
12 private:
13 int numBlack;
14 int numWhite;
15
16 public:
17 /**
18 * \brief Create score with given black and white components.
19 *

20 * \param numBlack the black component of the score
21 * \param white the white component of the score
22 */
23 Score(const int numBlack, const int numWhite)
24 : numBlack(numBlack), numWhite(numWhite) { } // in-lined implementation
25
26 /**
27 * \brief Get the black component of the score.
28 *

29 * \return the number of pegs scored as black
30 */
31 int getNumBlack() const {
32 return numBlack; // in-lined implementation
33 }
34
35 /**
36 * \brief Get the white component of the score.
37 *

38 * \return the number of pegs scored as white
39 */
40 int getNumWhite() const {
41 return numWhite; // in-lined implementation
42 }
43 };
44 #endif

Figure 32: Contents of Score.h file for Mastermind project. No Score.cpp is necessary since all
function bodies are in-lined.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 78

1 #ifndef PATTERN H
2 #define PATTERN H
3
4 #include "Score.h"

5 #include <vector>

6
7 /**
8 * \brief Class for storing a color pattern for Mastermind.
9 */

10 class Pattern {
11 private:
12 std::vector<int> pegList;
13
14 public:
15 /**
16 * \brief Construct a new pattern.
17 *

18 * Initially, the pattern consists of numPegs pegs, each set to color 0.
19 *

20 * \param numPegs the length of the pattern
21 */
22 Pattern(const int numPegs);
23
24 /**
25 * \brief return the length of the current pattern
26 *

27 * \return the length of the pattern
28 */
29 int len() const;
30
31 /**
32 * \brief Return the current color setting (an integer) of the specified peg.
33 *

34 * \param index the index of the peg
35 * \return the peg's color
36 */
37 int getPegColor(const int index) const;
38
39 /**
40 * \brief Set the color of a peg at the given index of the pattern.
41 *

42 * \param index the index of the peg
43 * \param colorID the desired color identifier (an integer)
44 */
45 void setPegColor(const int index, const int colorId);

Figure 33: Contents of Pattern.h file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 79

46 /**
47 * \brief Compare the current pattern to another and calculate the score.
48 *

49 * \param otherPattern the pattern to be compared to the current one
50 * \return a Score instance representing the result.
51 */
52 Score compareTo(const Pattern& otherPattern) const;
53
54 /**
55 * \brief Make a random pattern.
56 *

57 * \param numColors the maximum number of colors to use in the pattern
58 */
59 void randomize(const int numColors);
60 };
61
62 #endif

Figure 33 (continuation): Contents of Pattern.h file.

1 #include "Pattern.h"

2 #include <set>

3 #include <algorithm> // includes the 'count' method
4 #include <stdlib.h>

5 using namespace std;
6
7 Pattern::Pattern(const int numPegs) : pegList(numPegs) {
8 int i;
9 for (i=0; i < numPegs; i++)

10 pegList[i] = 0;
11 }
12
13 int Pattern::len() const {
14 return pegList.size();
15 }
16
17 int Pattern::getPegColor(const int index) const {
18 return pegList[index];
19 }
20
21 void Pattern::setPegColor(const int index, const int colorId) {
22 pegList[index] = colorId;
23 }

Figure 34: Contents of Pattern.cpp file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 80

24 Score Pattern::compareTo(const Pattern& otherPattern) const {
25 // First calculate the black component of the score
26 int black = 0;
27 int i;
28 for (i=0; i< pegList.size(); i++) {
29 if (getPegColor(i) == otherPattern.getPegColor(i)) {
30 black++;
31 }
32 }
33
34 // The white component is a little more difficult to calculate.
35 // First find out the colors used in the current pattern
36 set<int> colorsUsed;
37 set<int>::iterator iter;
38 for (i=0; i< pegList.size(); i++)
39 if (colorsUsed.count(pegList[i]) == 0)
40 colorsUsed.insert(pegList[i]);
41
42 // For each color used find the smaller number of times
43 // it appears in each pattern and add them up.
44 int white = 0;
45 set<int>::iterator colorIter;
46 int color, count1, count2;
47 for (colorIter=colorsUsed.begin(); colorIter!=colorsUsed.end(); ++colorIter) {
48 color = *colorIter;
49 count1 = count(pegList.begin(), pegList.end(), color);
50 count2 = count(otherPattern. pegList.begin(), otherPattern. pegList.end(), color);
51 if (count1 < count2)
52 white += count1;
53 else

54 white += count2;
55 }
56 white −= black; // Don't count pegs that are paired up.
57
58 return Score(black, white);
59 }
60
61 void Pattern::randomize(const int numColors) {
62 int i;
63 for (i=0; i< pegList.size(); i++)
64 setPegColor(i, rand() % numColors);
65 }

Figure 34 (continuation): Contents of Pattern.cpp file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 81

1 #ifndef TEXTINPUT H
2 #define TEXTINPUT H
3
4 #include "Pattern.h"

5 #include <string>

6 #include <vector>

7 using std::string;
8 using std::vector;
9

10 /**
11 * \brief Class for dealing with text−based input for the Mastermind game.
12 */
13 class TextInput {
14 private:
15 int lengthOfPattern;
16 int numColorsInUse;
17 string palette;
18
19 public:
20 /**
21 * \brief Create a new text input instance.
22 *

23 * \param colorNames a list of strings (each color must start with a different letter)
24 */
25 TextInput(const vector<string>& colorNames);
26
27 /**
28 * \brief Ask the user how many pegs in the secret pattern.
29 *

30 * The length of the pattern is also stored internally.
31 *

32 * \return the length of the pattern
33 */
34 int queryLengthOfPattern();
35
36 /**
37 * \brief Ask the user how many colors to use for secret pattern.
38 *

39 * The number of colors is also stored internally.
40 *

41 * \return the number of colors
42 */
43 int queryNumberOfColors();

Figure 35: Contents of TextInput.h file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 82

44 /**
45 * \brief Ask the user maximum number of guesses to be allowed.
46 *

47 * \return the maximum number of guesses
48 */
49 int queryNumberOfTurns() const;
50
51 /**
52 * \brief Offer the user a new game..
53 *

54 * \return true if accepted, false otherwise
55 */
56 bool queryNewGame() const;
57
58 /**
59 * \brief Get a guess from the user and return it as a Pattern instance.
60 *

61 * \return the pattern entered
62 */
63 Pattern enterGuess() const;
64
65 private:
66 /**
67 * \brief Robustly prompt the user for an integer from small to large.
68 */
69 int readInt(const string& prompt, int small, int large) const;
70 };
71
72 #endif

Figure 35 (continuation): Contents of TextInput.h file.

1 #include "TextInput.h"

2 #include <iostream>

3 #include <sstream>

4 using namespace std;
5
6 TextInput::TextInput(const vector<string>& colorNames) :
7 lengthOfPattern(0), numColorsInUse(0), palette("") {
8 vector<string>::const iterator iter;
9 for (iter=colorNames.begin(); iter!=colorNames.end(); ++iter)

10 palette.push back((*iter)[0]);
11 }

Figure 36: Contents of TextInput.cpp file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 83

12 int TextInput:: readInt(const string& prompt, int small, int large) const {
13 string buffer;
14 int answer = small − 1; // intentionally invalid
15 while (!(small <= answer && answer <= large)) {
16 cout << prompt << " (from " << small << " to " << large << ")? ";
17 cin >> buffer;
18 stringstream converter;
19 converter << buffer;
20 converter >> answer;
21 if (!converter.fail()) {
22 if (!(small <= answer && answer <= large))
23 cout << "Integer must be from " << small << " to " << large << "." << endl;
24 }
25 else {
26 cout << "That is not a valid integer." << endl;
27 }
28 }
29 return answer;
30 }
31
32 int TextInput::queryLengthOfPattern() {
33 lengthOfPattern = readInt("How many pegs are in the secret", 1, 10);
34 return lengthOfPattern;
35 }
36
37 int TextInput::queryNumberOfColors() {
38 numColorsInUse = readInt("How many colors are available", 2, palette.size());
39 return numColorsInUse;
40 }
41
42 int TextInput::queryNumberOfTurns() const {
43 return readInt("How many turns are allowed", 1, 20);
44 }
45
46 bool TextInput::queryNewGame() const {
47 cout << endl;
48 cout << "Would you like to play again? " << endl;
49 string answer;
50 cin >> answer;
51 return (answer == "y" answer == "Y" answer == "yes"

52 answer == "YES" answer == "YES");
53 }

Figure 36 (continuation): Contents of TextInput.cpp file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 84

54 Pattern TextInput::enterGuess() const {
55 Pattern pattern(lengthOfPattern);
56 string currentPalette = palette.substr(0, numColorsInUse);
57 string patternString;
58 int i;
59 bool validPattern = false;
60 while (not validPattern) {
61 cout << endl;
62 cout << "Enter a guess (colors are ";
63 cout << palette.substr(0, numColorsInUse) << "): ";
64 cin >> patternString;
65
66 validPattern = true;
67 if (patternString.size() != lengthOfPattern) {
68 cout << "The pattern must have " << lengthOfPattern << " pegs" << endl;
69 validPattern = false;
70 } else {
71 for (i=0; i< lengthOfPattern; i++)
72 if (currentPalette.find(toupper(patternString[i])) > lengthOfPattern)
73 validPattern = false;
74 if (!validPattern)
75 cout << "The color options are " << currentPalette << endl;
76 }
77
78 if (validPattern) {
79 for (i=0; i< lengthOfPattern; i++)
80 pattern.setPegColor(i, palette.find(toupper(patternString[i])));
81 }
82 }
83
84 return pattern;
85 }

Figure 36 (continuation): Contents of TextInput.cpp file.

1 #ifndef TEXTOUTPUT H
2 #define TEXTOUTPUT H
3
4 #include "Pattern.h"

5 #include "Score.h"

6 #include <string>

7 #include <vector>

8 using std::string;
9 using std::vector;

Figure 37: Contents of TextOutput.h file (continued on next page).

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 85

10 /**
11 * \brief Provide text−based output for the Mastermind game.
12 */
13 class TextOutput {
14 private:
15 string colorOptions;
16 int currentTurnNum;
17 int lengthOfPattern;
18 int maxNumberOfTurns;
19
20 public:
21 /**
22 * \brief Construct a new TextOutput instance.
23 *

24 * \param colorNames a sequence of strings (each color must start with a different letter)
25 */
26 TextOutput(const vector<string>& colorNames);
27
28 /**
29 * \brief Game is beginning with specified parameters.
30 */
31 void startGame(int lengthOfPattern, int maxNumberOfTurns);
32
33 /**
34 * \brief Display recent guess Pattern and resulting Score to the screen.
35 */
36 void displayTurn(const Pattern& guess, const Score& result);
37
38 /**
39 * \brief Inform the player that he/she has correctly matched the secret Pattern.
40 */
41 void announceVictory(const Pattern& secret) const;
42
43 /**
44 * \brief Inform the player that he/she has lost and reveal the secret Pattern.
45 */
46 void announceDefeat(const Pattern& secret) const;
47
48 private:
49 /**
50 * \brief Returns string representation of given Pattern using color shorthands.
51 */
52 string patternAsString(const Pattern& thePattern) const;
53 };
54
55 #endif

Figure 37 (continuation): Contents of TextOutput.h file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 86

1 #include "TextOutput.h"

2 #include <iostream>

3 using namespace std;
4
5 TextOutput::TextOutput(const vector<string>& colorNames) :
6 currentTurnNum(0), lengthOfPattern(0), maxNumberOfTurns(0), colorOptions("") {
7 vector<string>::const iterator iter;
8 for (iter=colorNames.begin(); iter!=colorNames.end(); ++iter)
9 colorOptions.push back((*iter)[0]);

10 }
11
12 void TextOutput::startGame(int lengthOfPattern, int maxNumberOfTurns) {
13 currentTurnNum = 0;
14 lengthOfPattern = lengthOfPattern;
15 maxNumberOfTurns = maxNumberOfTurns;
16 }
17
18 void TextOutput::displayTurn(const Pattern& guess, const Score& result) {
19 currentTurnNum++;
20 cout << "On turn " << currentTurnNum << " of " << maxNumberOfTurns
21 << " guess " << patternAsString(guess) << " scored "

22 << result.getNumBlack() << " black and " << result.getNumWhite()
23 << " white." << endl;
24 }
25
26 void TextOutput::announceVictory(const Pattern& secret) const {
27 cout << endl;
28 cout << "Congratulations, you won!" << endl;
29 cout << "The secret was " << patternAsString(secret) << endl;
30 }
31
32 void TextOutput::announceDefeat(const Pattern& secret) const {
33 cout << endl;
34 cout << "The secret was " << patternAsString(secret) << endl;
35 cout << "Good luck next time." << endl;
36 }
37
38 string TextOutput:: patternAsString(const Pattern& thePattern) const {
39 string display;
40 int i;
41 for (i=0; i< lengthOfPattern; i++)
42 display.push back(colorOptions[thePattern.getPegColor(i)]);
43 return display;
44 }

Figure 38: Contents of TextOutput.cpp file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 87

1 #ifndef MASTERMIND H
2 #define MASTERMIND H
3
4 #include "TextInput.h"

5 #include "TextOutput.h"

6
7 /**
8 * \brief Main class for the Mastermind game.
9 */

10 class Mastermind {
11 private:
12 TextInput& inputManager;
13 TextOutput& outputManager;
14
15 public:
16 /**
17 * \brief Create a new instance of the Mastermind game.
18 *

19 * \param inputManager instance of class that gathers input from the user
20 * \param outputManager instance of class that displays output to the user
21 */
22 Mastermind(TextInput& inputManager, TextOutput& outputManager);
23
24 private:
25 /**
26 * \brief Play one game.
27 */
28 void runSingleGame();
29 };
30
31 #endif

Figure 39: Contents of Mastermind.h file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 88

1 #include "Mastermind.h"

2
3 Mastermind::Mastermind(TextInput& inputManager, TextOutput& outputManager) :
4 inputManager(inputManager), outputManager(outputManager) {
5 bool playAgain = true;
6 while (playAgain) {
7 runSingleGame();
8 playAgain = inputManager.queryNewGame();
9 }

10 }
11
12 void Mastermind:: runSingleGame() {
13 // get parameters from the user
14 int lengthOfPattern = inputManager.queryLengthOfPattern();
15 int numberOfColors = inputManager.queryNumberOfColors();
16 int maxNumberOfTurns = inputManager.queryNumberOfTurns();
17 outputManager.startGame(lengthOfPattern, maxNumberOfTurns);
18
19 // pick a new secret
20 Pattern secret(lengthOfPattern);
21 secret.randomize(numberOfColors);
22
23 // start playing
24 int round = 0;
25 Pattern guess(lengthOfPattern);
26 bool victory = false;
27 while (round < maxNumberOfTurns && !victory) {
28 round++;
29 // enact a single turn
30 guess = inputManager.enterGuess();
31 Score result = guess.compareTo(secret);
32 outputManager.displayTurn(guess, result);
33 if (result.getNumBlack() == lengthOfPattern)
34 victory = true;
35 }
36
37 if (victory)
38 outputManager.announceVictory(secret);
39 else

40 outputManager.announceDefeat(secret);
41 }

Figure 40: Contents of Mastermind.cpp file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

A. FULL SOURCE CODE Page 89

1 #include "Mastermind.h"

2
3 int main() {
4 vector<string> palette;
5 palette.push back("Red");
6 palette.push back("Blue");
7 palette.push back("Green");
8 palette.push back("White");
9 palette.push back("Yellow");

10 palette.push back("Orange");
11 palette.push back("Purple");
12 palette.push back("Turquoise");
13
14 TextInput input(palette);
15 TextOutput output(palette);
16 Mastermind game(input, output);
17
18 return 0;
19 }

Figure 41: Contents of Mastermind main.cpp file.

A Transition Guide from Python to C++ Michael H. Goldwasser and David Letscher

