
CS314: Algorithms Problem Session Spring 2010

CS314: Algorithms
Midterm 1 review

In class, March 15

Problems

1. Traveling the Trails (Taken from first solved exercise in Ch. 4 of text, page 183)

Suppose your friends have decided to go camping. They want to hike as much as possible
during the day, but (since they’ve watched The Blair Witch Project too often) they don’t
want to do any hiking after dark. On the map, they’ve identified a large number of good
stopping points for camping, and they’re proposing the following system. Every time they
come to a good stopping point, they’ll determine whether they can make it to the next one
before nightfall. If they can make it, they keep hiking; otherwise, they stop. They claim that
this system must be good, since it minimizes the number of stops they need to make.

Being a good algorithms student, you immediately recognize a greedy algorithm and
become skeptical. Does this really minimize the number of stopping points?

To formalize the problem, we’ll model the trail as a line segment of length L, and assume
your friends can hike d miles per day. We’ll assume potential stopping points are labeled
x1, x2, . . . , xn along the segment, starting with 0 at the beginning of the segment. We’ll also
assume (quite generously) that your friends are correct in their estimation of whether they
can make it to the next good stopping point before dark. Finally, we’ll say a set of the
stopping points is valid if the distance between each adjacent pair is at most d, the first is at
most d from 0, and the last is at most d from the end of the segment.

We now state the question formally: is your friends greedy algorithm optimal, in the sense
that it finds a valid set that is as small as possible?

2. Edge in an MST (Taken from third solved exercise in Ch. 4 of text, page 188)

Suppose you are given a connected graph G, with edge costs that you may assume are
all distinct. G has n vertices and m edges. A particular edge e of G is specified. Give an
algorithm with running time O(m + n) that decides whether e is contained in a minimum
spanning tree of G.

3. Maximizing Fun

A company is planning a party for its employees. The employees in the company are
organized into a strict hierarchy, that is, a tree with the company president at the root. The
organizers of the party have assigned a real number to each employee measuring how fun
the employee is. In order to keep things social, there is one restriction on the guest list:
an employee cannot attend the party if their immediate supervisor is present. On the other
hand, the president of the company must attend the party, even though she has a negative
fun rating; it is her company, after all. Give an algorithm that makes a guest list for the
party that maximizes the sum of the fun ratings of the guests.

1



CS314: Algorithms Problem Session Spring 2010

4. Adding an edge

Let G = (V,E) be an undirected graph with costs ce ≥ 0 on the edges e ∈ E. Assume
you are given a minimum-cost spanning tree T in G. Now assume that a new edge is added
to G, connecting two nodes u and v with cost c.

(a) Give an algorithm to test if T remains the minimum cost spanning tree with the new
edge added to G. Can you make your algorithm run in O(m) time? How about O(n)
time?

(b) Suppose T is no longer the MST. Given a linear time O(m + n) algorithm to update the
tree T to be the new MST.

5. Moving on a Checkerboard

Suppose that you are given an n × n checkerboard and a checker. You must move the
checker from the bottom edge of the board to the top edge of the board according to the
following rule. At each step you may move the checker to one of three squares:

1) the square immediately above

2) the square that is one up and one to the left (but only if the checker is not already in
the leftmost column)

3) the square that is one up and one to the right (but only if the checker is not already in
the rightmost column)

Each time you move from square x to square y, you receive p(x, y) dollars. You are given
a list of the values p(x, y) for each pair (x, y) for which a move from x to y is legal. Do not
assume that p(x, y) is positive.

Give an algorithm that figures out the set of moves that will move the checker from
somewhere along the bottom edge to somewhere along the top edge while gathering as many
dollars as possible. You algorithm is free to pick any square along the bottom edge as a
starting point and any square along the top edge as a destination in order to maximize the
number of dollars gathered along the way. What is the running time of your algorithm?

2


