Math 135: Discrete Mathematics, Spring 2010
 Homework 2

Due in class on Friday, Feb. 12, 2010

For this homework, you may write up solutions with 1 partner; both of you will receive the same grade based on your joint writeup. Please make sure to read the course policies on homework before writing up your homework.

1. Prove or disprove the following:
(a) $A \times(B \cup C)=(A \times B) \cap(A \times C)$
(b) $(A-C) \cap(C-B)=\emptyset$
(c) If $\mathcal{P}(A)=\mathcal{P}(B)$, then $A=B$.
(d) If $A \cap C=B \cap C$, then $A=B$.
2. (a) Prove that if A and B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) Give a counterexample for the following statement: if A and B are sets, then $\mathcal{P}(A) \cup$ $\mathcal{P}(B)=\mathcal{P}(A \cup B)$.
3. If A and B are sets, then the symmetric difference of A and B is written $A \triangle B$ and is defined to be $(A-B) \cup(B-A)$. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then $\left(\left(\left(A_{1} \triangle A_{2}\right) \triangle A_{3}\right) \cdots \triangle A_{n-1}\right) \triangle A_{n}=\left\{x: x\right.$ is in an odd number of the sets $\left.A_{1}, A_{2}, \ldots, A_{n}\right\}$.

Hint: Think induction!
4. For the following functions, decide whether each one is one-to-one, onto, and bijective, and prove each of your answers.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(x)=x^{2}+1$
(b) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=2 m-n$
(c) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=m^{2}-n^{2}$
5. Give an example of a function from \mathbb{N} to \mathbb{N} which is:
(a) one-to-one but not onto
(b) onto but not one-to-one
(c) both onto and one-to-one (but NOT the identity function)
(d) neither one-to-one or onto
6. Let f be a function from the set A to the set B. Let S and T be subsets of A.
(a) Prove that $f(S \cup T)=f(S) \cup f(T)$
(b) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$
(c) Give an example to show that the inclusion from part (b) may be proper - in other words, give examples of sets and a function where $f(S \cap T) \subset f(S) \cap f(T)$

