Math 135: Discrete Mathematics, Spring 2010
 Homework 2

Due in class on Monday, Feb. 1, 2010

For this homework, you may write up solutions with 1 partner; both of you will receive the same grade based on your joint writeup. Please make sure to read the course policies on homework before writing up your homework.

1. Prove that if n is a positive integer, then n is even if and only if $7 n+4$ is even.
2. Prove or disprove that the product of a (nonzero) rational number and an irrational number is irrational.
3. Prove that the square of an integer ends with $0,1,4,5,6$, or 9 . (Hint: Let $n=10 k+l$ where $l=0,1,2, \ldots, 9)$.
4. (a) Prove that for any $n \geq 1, n^{2} \geq n$.
(b) Prove that $n!<n^{n}$ if $n \geq 1$
5. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.
6. Assume that a chocolate bar consists of n squares arranged in a rectangular pattern. The bar can only be broken along vertical or horizontal lines separating the squares. (Think of a Hershey's bar.)

Assuming that only one piece can be broken at a time, determine how many breaks you must make in order to break the bar into n squares. Use induction to prove your answer is correct.

