Math 135 Cheat Sheet for Final Exam

Asymptotic notation	
$f(n)=o(g(n))$	$\forall c>0: \exists N>0: \forall n \geq N: f(n)<c \cdot g(n)$
$f(n)=O(g(n))$	$\exists c>0: \exists N>0: \forall n \geq N: f(n) \leq c \cdot g(n)$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $\quad f(n)=\Omega(g(n))$
$f(n)=\Omega(g(n))$	$\exists c>0: \exists N>0: \forall n \geq N: f(n) \geq c \cdot g(n)$
$f(n)=\omega(g(n))$	$\forall c>0: \exists N>0: \forall n \geq N: f(n)>c \cdot g(n)$

$f(n)=O(g(n)) \Longrightarrow f(n)+h(n)=O(g(n)+h(n))$
$f(n)=O(g(n)) \Longrightarrow f(n) \cdot h(n)=O(g(n) \cdot h(n))$
$f(n)+g(n)=O(\max \{f(n), g(n)\})$
$f(n)=O(g(n))$ and $g(n)=O(h(n)) \Longrightarrow f(n)=O(h(n))$

$\sum_{i=0}^{\infty} \alpha=\frac{1}{1-\alpha} \quad($ if $\alpha<1)$
$\sum_{i=0}^{d} i^{c}=\Theta\left(n^{c+1}\right) \quad($ if $c \neq-1)$
$\sum_{i=0}^{n} c^{i}=\Theta\left(c^{n}\right) \quad($ if $c>1)$
$\sum_{i=1}^{n} \log i=\Theta(n \log n)$

Logarithm identities
$\log _{b}\left(b^{x}\right)=x$
$b^{\log _{b} x}=x$
$\log _{b} x=\log _{c} x$
$\log _{c} b$
$\log _{b}(x y)=\log _{b} x+\log _{b} y$
$\log _{b}(1 / x)=-\log _{b} x$
$x^{\log _{b} y}=y^{\log _{b} x}$
$\log _{b}\left(x^{y}\right)=y \log _{b} x$

Counting

permutation $P(n, r) \quad$ number of ways to list r distinct elements from a set of size n combination $\binom{n}{r}$ number of ways to choose r elements from a set of size n Binomial theorem $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}$
coins and pirates number of ways to distribute r identical coins to n pirates: $\binom{r+n-1}{r}$

Undirected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$	
$E \subseteq\{\{u, v\} \mid u \in V \wedge v \in V \wedge u \neq v\}$	
subgraph	$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
walk	$v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ where $\left\{v_{i-1}, v_{i}\right\} \in E$ for all i
trail	walk with no repeated edges
path	walk with no repeated vertices
cycle	walk with no repeated vertices except $v_{0}=v_{n}$
connected	contains a walk from any vertex to any other
acyclic	no subgraph is a cycle
tree	connected and acyclic $\Longrightarrow\|E\|=\|V\|-1$
degree sum	$\sum_{v \in V} \operatorname{deg}(v)=2\|E\|$
Eulerian	contains a closed trail which visits every vertex
clique	set of vertices which are pairwise adjacent
independent set	set of vertices which are pairwise non-adjacent
bipartite	vertices of the graph can be partitioned into 2 independent sets
Euler's formula	in a planar graph, $\|V\|-\|E\|+\|F\|=2$
number of edges in a planar graph	at most $3\|V\|-6$ (by Euler's formula)

